Simscape™
Language Guide

<@

MATLAB&SIMULINK?

R2019b -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simscape™ Language Guide
© COPYRIGHT 2008-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 3.0 (Release 2008b)
Revised for Version 3.1 (Release 2009a)
Revised for Version 3.2 (Release 2009b)
Revised for Version 3.3 (Release 2010a)
Revised for Version 3.4 (Release 2010b)
Revised for Version 3.5 (Release 2011a)
Revised for Version 3.6 (Release 2011b)
Revised for Version 3.7 (Release 2012a)
Revised for Version 3.8 (Release 2012b)
Revised for Version 3.9 (Release 2013a)
Revised for Version 3.10 (Release 2013b)
Revised for Version 3.11 (Release 2014a)
Revised for Version 3.12 (Release 2014b)
Revised for Version 3.13 (Release 2015a)
Revised for Version 3.14 (Release 2015b)
Rereleased for Version 3.13.1 (Release
2015aSP1)

Revised for Version 4.0 (Release 2016a)
Revised for Version 4.1 (Release 2016b)
Revised for Version 4.2 (Release 2017a)
Revised for Version 4.3 (Release 2017b)
Revised for Version 4.4 (Release 2018a)
Revised for Version 4.5 (Release 2018b)
Revised for Version 4.6 (Release 2019a)
Revised for Version 4.7 (Release 2019b)

Contents

Simscape Language Fundamentals

1]

What Is the Simscape Language? 1-2
Model Linear Resistor in Simscape Language 1-3
Typical Simscape Language Tasks 1-8
Simscape File Types and Structure 1-10
Simscape File Typeo, 1-10
Fileand Model Typescovuiiiinnnnnnn... 1-10
Model File Structure 1-11
When to Define a New Physical Domain 1-13
How to Define a New Physical Domain 1-14
Creating Custom Components 1-16
Component Types and Prerequisites 1-16
How to Create a New Component 1-16
Generating a Custom Block from a Component File 1-17
Adding a Custom Block Library 1-17

Creating Custom Components and Domains

2|

Declaring Domains and Components 2-3
Declaration Section Purpose 2-3
Definitions 2-3
Member Declarations 2-4
Member SUMMAaryuiiiiiiine . 2-5

Declaring a Member as a Value with Unit 2-6

Declare Through and Across Variables for a Domain 2-8
Declare Component Variables 2-10
Through and Across Component Variables 2-10
Internal Component Variables 2-10
Variable Priority for Model Initialization 2-11
Nominal Value and Unit for a Variable 2-13
Declare Component Parameters 2-16
Parameter Units i 2-16
Case Sensitivity 2-17
Declare Component Nodes 2-19
Declare Component Inputs and Qutputs 2-21
Declare a Mechanical Rotational Domain 2-23
Declare a Spring Component 2-25

Define Relationship Between Component Variables and Nodes

.. 2-27
Connecting Component Variables to the Domain 2-27
Workflow from Domain to Component 2-27
Connecting One Through and One Across Variable 2-29
Connecting Two Through and Two Across Variables 2-29

Defining Component Equations 2-31
Equation Section Purpose 2-31
Specifying Mathematical Equality 2-31
Use of Relational Operators in Equations 2-33
Equation Dimensionality 2-35
Equation Continuity 2-36
Working with Physical Units in Equations 2-36

Simple Algebraic System 2-38

Use Simulation Time in Equations 2-39

Initial Equations 2-40

vi Contents

Using Conditional Expressions in Equations 2-43

Statement Syntax 2-43
Restrictions 2-44
Example 2-44
Using Intermediate Terms in Equations 2-46
Why Use Intermediate Terms? 2-46
Declaring and Using Named Intermediate Terms 2-48
Using the let Expressionscvvuv.... 2-51
Using Lookup Tables in Equations 2-60
Programming Run-Time Errors and Warnings 2-63
Import Symbolic Math Toolbox Equations 2-65
Discrete Event Modeling 2-67
Event Variables 2-67
Event Data Type and edge Operator 2-68
Events Section and when Clause 2-69
Triggered Delay Component 2-71
Enabled Component 2-72
About Composite Components 2-74
Declaring Member Components 2-75
Parameterizing Composite Components 2-77
Caution on Using setup to Parameterize Composite Components
.. 2-77
Specifying Initial Target Values for Member Variables 2-80
Specifying Component Connections 2-82
About the Structure Section 2-82
Conserving Connectionscovuui... 2-83
Connections to Implicit Reference Node 2-84
Physical Signal Connections 2-85
Nonscalar Physical Signal Connections 2-87

viii

Contents

Converting Subsystems into Composite Components
Suggested Workflows
Parameter Promotion
Limitations o

Defining Component Variants
Conditional Sections
Rules and Restrictions
Example

Defining Conditional Visibility of Component Members . . .
Rules and Restrictions

Component Variants — Series RLC Branch
Component Variants — Thermal Resistor
Mechanical Component — Spring
Electrical Component — Ideal Capacitor
No-Flow Component — Voltage Sensor
Grounding Component — Electrical Reference
Composite Component — DCMotor
Working with Domain Parameters
Declaring Domain Parameters
Propagation of Domain Parameters
Source Componentsiiiiinn.n.
Propagating Components
Blocking Components
Custom Library with Propagation of Domain Parameters . .
Attribute Lists
Attribute Types
Model Attributes
Member Attributes

Subclassing and Inheritance

Importing Domain and Component Classes

2-117

2-119

2-121

2-123

2-125

2-129
2-129
2-129
2-130
2-130
2-131
2-131

2-136
2-136
2-136
2-137
2-141

2-143

Composite Component Using import Statements 2-145

Advanced Techniques

3|

Mode Chart Modeling 3-2
About Mode Chartscc ... 3-2
Mode Chart Syntaxiiiiiiinnen. 3-3
Mode Chart Example, 3-3

Switch with Hysteresis 3-6

Enumerations 3-14
Enumerations in Simscape Language 3-14
Specifying Display Strings for Enumeration Members 3-15
Evaluating Enumeration Members 3-16
Using Enumeration in Event Variables and when Clauses ... 3-18
Using Enumeration in Predicates 3-18
Using Enumeration in Function Arguments 3-20
Rules and Restrictions 3-21

Declaration Functions 3-23
Multiple Return Values 3-24
Restriction on Values with Units 3-24
Run-Time Compatibility 3-25

Simscape Functions 3-27
File Structureand Syntax 3-27
Rules and Restrictions 3-27
Using Simscape Functions 3-29
Recommended Ways of Code Reuse 3-29

Simscape File Deployment

4

Generating Custom Blocks from Simscape Component Files

ix

X

Contents

Selecting Component File Directly from Block
Suggested Workflows
Component File Locations

Deploy a Component File in Block Diagram
Switch Between Different Source Components
Prototype a Component and Get Instant Feedback

Building Custom Block Libraries
Workflow Overviewttt
Organizing Your Simscape Files
Using Source Protection for Simscape Files
Converting Your Simscape Files

When to Rebuild a Custom Library

Customizing the Library Name and Appearance
Library Configuration Files
Customizing the LibraryIcon

Create a Custom Block Library

Customizing the Block Name and Appearance
Default Block Display
Customize the Block Name
Describe the Block Purpose
Specify Meaningful Names for the Block Parameters and

Variables
Customize the Names and Locations of the Block Ports
Customize the BlockIcon

Customize Block Display

Checking File and Model Dependencies
Why Check File and Model Dependencies?
Checking Dependencies of Protected Files
Checking Simscape File Dependencies
Checking Library Dependencies
Checking Model Dependencies

4-22

4-30
4-30
4-30
4-31
4-31

4-34

Case Study — Basic Custom Block Library 4-58

Getting Started 4-58
Building the Custom Library 4-59
AddingaBlock 4-59
Adding Detail toa Component 4-60
Adding a Component with an Internal Variable 4-61
Customizing the BlockIcon 4-63
Case Study — Electrochemical Library 4-65
Getting Started 4-65
Building the Custom Library 4-66
Defininga New Domain 4-66
Structuring the Library 4-68
Defining a Reference Component 4-69
Defining an Ideal Source Component 4-69
Defining Measurement Components 4-70
Defining Basic Components 4-72
Defining a Cross-Domain Interfacing Component 4-74
Customizing the Appearance of the Library 4-76
Using the Custom Components to Build a Model 4-76
References i 4-77

Language Reference

S|

Simscape Foundation Domains

6|

Foundation Domain Types and Directory Structure 6-2
Electrical Domain 6-4
Three-Phase Electrical Domain 6-5
GasDomain 6-6
Hydraulic Domain 6-11

xi

xii

Contents

Magnetic Domain .

Mechanical Rotational Domain

Mechanical Translational Domain

Moist AirDomain i

Moist Air Source Domain

Thermal Domain . .

Thermal Liquid Domain

Two-Phase Fluid Domain

Pneumatic Domain

6-12

6-13

6-14

6-15

6-21

6-24

6-25

6-28

6-31

Simscape Language Fundamentals

* “What Is the Simscape Language?” on page 1-2

* “Model Linear Resistor in Simscape Language” on page 1-3
* “Typical Simscape Language Tasks” on page 1-8

* “Simscape File Types and Structure” on page 1-10

* “When to Define a New Physical Domain” on page 1-13

* “How to Define a New Physical Domain” on page 1-14

* “Creating Custom Components” on page 1-16

1 Simscape Language Fundamentals

What Is the Simscape Language?

The Simscape language extends the Simscape modeling environment by enabling you to
create new components that do not exist in the Foundation library or in any of the add-on
products. It is a dedicated textual language for modeling physical systems and has the
following characteristics:

* Based on the MATLAB® programming language

* Contains additional constructs specific to physical modeling

The Simscape language makes modeling physical systems easier and more intuitive. It
lets you define custom components as textual files, complete with parameterization,
physical connections, and equations represented as acausal implicit differential algebraic
equations (DAEs). The components you create can reuse the physical domain definitions
provided with Simscape to ensure that your components are compatible with the standard
Simscape components. You can also add your own physical domains. You can
automatically build and manage block libraries of your Simscape components, enabling
you to share these models across your organization.

See Also

Related Examples

. “Model Linear Resistor in Simscape Language” on page 1-3

More About

. “Typical Simscape Language Tasks” on page 1-8

. “Simscape File Types and Structure” on page 1-10

. “Creating Custom Components” on page 1-16

. “When to Define a New Physical Domain” on page 1-13

1-2

Model Linear Resistor in Simscape Language

Model Linear Resistor in Simscape Language

Let us discuss how modeling in Simscape language works, using a linear resistor as an

example.

A linear resistor is a simple electrical component, described by the following equation:
V=IR

where

"4 Voltage across the resistor

I Current through the resistor

R Resistance

A Simscape file that implements such a linear resistor might look as follows:

co

o° o° o° o o° o°

en

mponent my resistor

Linear Resistor

The voltage-current (V-I) relationship for a linear resistor is V=I*R,
where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the
+ and - signs respectively.

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
end
variables
i=4{0, 'A"}; % Current
v=4{0, 'V'},; % Voltage
end
parameters
R={1, 'Ohm' }; % Resistance
end
branches
i: p.i->n.i;
end
equations
assert (R>0)
V == p.v - Nn.v;
==]*R;
end
d

1-3

1 Simscape Language Fundamentals

1-4

Let us examine the structure of the Simscape file my resistor.ssc.

The first line indicates that this is a component file, and the component name is
my resistor.

Following this line, there are optional comments that customize the block name and
provide a short description in the block dialog box. Comments start with the % character.

The next section of the Simscape file is the declaration section. For the linear resistor, it
declares:

* Two electrical nodes, p and n (for + and - terminals, respectively).

* Through and Across variables, current i and voltage v, to be connected to the
electrical domain Through and Across variables later in the file. You connect the
component and domain variables by specifying the connection between the component
variables and nodes.

All the public component variables appear on the Variables tab of the dialog box of
the block generated from the component file. To specify how the name of the variable
appears in the dialog box, use the comment immediately following the variable
declaration (Current and Voltage).

* Parameter R, with a default value of 1 Ohm, specifying the resistance value. This
parameter appears in the dialog box of the block generated from the component file,
and can be modified when building and simulating a model. The comment immediately
following the parameter declaration, Resistance, specifies how the name of the
block parameter appears in the dialog box.

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The i
p.1i -> n.1istatement indicates that the current through the resistor flows from node p
to node n.

The final section contains the equations:

* The assert construct performs parameter validation, by checking that the resistance
value is greater than zero. If the block parameter is set incorrectly, the assert
triggers a run-time error.

» The first equation, v == p.v - n.v, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain
Across variable). It defines the voltage across the resistor as the difference between
the node voltages.

Model Linear Resistor in Simscape Language

» The second equation, v == 1*R, describes the operation of a linear resistor based on
Ohm'’s law. It defines the mathematical relationship between the component Through
and Across variables, current i and voltage v, and the parameter R.

The == operand used in these equations specifies continuous mathematical equality
between the left- and right-hand side expressions. This means that the equation does
not represent assignment but rather a symmetric mathematical relationship between
the left- and right-hand operands. This equation is evaluated continuously throughout
the simulation.

The following illustration shows the resulting custom block, generated from this
component file.

Simscape
o+ B |

my_resistor

Linear Resistor

"4 Block Parameters: Linear Resistor @
Linear Resistor

The voltage-current (V-I) relationship for a linear resistor is V=I*R, where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the + and - signs respectively.

Source code

Settings
Parameters | Variables
Resistance: 1 Ohm

OK H Cancel H Help Apply

1-5

1 Simscape Language Fundamentals

"4 Block Parameters: Linear Resistor

Linear Resistor

Source code

Settings

Farameters

Variables

The voltage-current (V-I) relationship for a linear resistor is V=I*R, where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the + and - signs respectively.

m

Override Variable Priority

Current None 0

Voltage None 0

Beginning Value

Unit

[ok

][Cancel H Help] Apply

To learn more about writing Simscape files and converting your textual components into
custom Simscape blocks, refer to the following table.

For...

See...

Declaration semantics, rules, and examples

“Declaring Domains and Components” on
page 2-3

Detailed information on writing component
equations

“Defining Component Equations” on page
2-31

Annotating the component file to improve
the generated block cosmetics and usability

“Customizing the Block Name and
Appearance” on page 4-40

Generating Simscape blocks from
component files

“Generating Custom Blocks from Simscape
Component Files” on page 4-2

See Also

Related Examples

1-6

. “Mechanical Component — Spring” on page 2-117
. “Electrical Component — Ideal Capacitor” on page 2-119
. “No-Flow Component — Voltage Sensor” on page 2-121

See Also

“Grounding Component — Electrical Reference” on page 2-123
“Composite Component — DC Motor” on page 2-125

More About

“What Is the Simscape Language?” on page 1-2
“Simscape File Types and Structure” on page 1-10
“Creating Custom Components” on page 1-16

“When to Define a New Physical Domain” on page 1-13

1-7

1 Simscape Language Fundamentals

Typical Simscape Language Tasks

Simscape block libraries contain a comprehensive selection of blocks that represent
engineering components such as valves, resistors, springs, and so on. These prebuilt
blocks, however, may not be sufficient to address your particular engineering needs.
When you need to extend the existing block libraries, use the Simscape language to
define customized components, or even new physical domains, as textual files. Then
convert your textual components into libraries of additional Simscape blocks that you can
use in your model diagrams.

The following table lists typical tasks along with links to background information and

examples.

Task

Background Information

Examples

Create a custom component
model based on equations

“Creating Custom Components”
on page 1-16

“Declaring Domains and
Components” on page 2-3

“Defining Component
Equations” on page 2-31

“Declare a Spring Component”
on page 2-25

“Mechanical Component —
Spring” on page 2-117

“Electrical Component — Ideal
Capacitor” on page 2-119

“No-Flow Component — Voltage
Sensor” on page 2-121

“Grounding Component —
Electrical Reference” on page 2-
123

Create a custom component
model constructed of other
components

“About Composite Components”
on page 2-74

“Declaring Member
Components” on page 2-75

“Parameterizing Composite
Components” on page 2-77

“Specifying Component
Connections” on page 2-82

“Composite Component — DC
Motor” on page 2-125

1-8

Typical Simscape Language Tasks

Task

Background Information

Examples

Generate a custom block from a
Simscape component file

“Selecting Component File
Directly from Block” on page 4-
4

“Customizing the Block Name
and Appearance” on page 4-40

“Deploy a Component File in
Block Diagram” on page 4-6

“Customize Block Display” on
page 4-52

Add a custom block library to
Simscape libraries

“Building Custom Block
Libraries” on page 4-30

“Using Source Protection for
Simscape Files” on page 4-31

“Customizing the Library Name
and Appearance” on page 4-35

“Customizing the Block Name
and Appearance” on page 4-40

“Create a Custom Block
Library” on page 4-38

“Customize Block Display” on
page 4-52

Define a new domain, with
associated Through and Across
variables, and then use it in
custom components

“When to Define a New Physical
Domain” on page 1-13

“Declaring Domains and
Components” on page 2-3

“Declare a Mechanical
Rotational Domain” on page 2-
23

“Propagation of Domain
Parameters” on page 2-129

Create a component that
supplies domain-wide
parameters (such as fluid
temperature) to the rest of the
model

“Working with Domain
Parameters” on page 2-129

“Custom Library with
Propagation of Domain
Parameters” on page 2-131

1-9

1 Simscape Language Fundamentals

Simscape File Types and Structure

1-10

In this section...

“Simscape File Type” on page 1-10
“File and Model Types” on page 1-10

“Model File Structure” on page 1-11

Simscape File Type

The Simscape file is a dedicated file type in the MATLAB environment. It has the
extension .ssc.

The Simscape file contains language constructs that do not exist in MATLAB. They are
specific to modeling physical objects. However, the Simscape file incorporates the basic
MATLAB programming syntax at the lowest level.

Simscape files must reside in a +package directory on the MATLAB path:

* directory on the path/+MyPackage/MyComponent.ssc
* directory on the path/+MyPackage/+Subpackage/. . ./MyComponent.ssc

For more information on packaging your Simscape files, see “Organizing Your Simscape
Files” on page 4-30.

File and Model Types

There are two types of Simscape files that correspond to the two model types:

* Domain models describe the physical domains through which component models
exchange energy and data. These physical domains correspond to port types, for
example, translational, rotational, hydraulic, and so on.

* Component models describe the physical components that you want to model, that is,
they correspond to Simscape blocks.

For example, to implement a variable area hydraulic orifice that is different from the one
in the Simscape Foundation library, you can create a component model,
MyVarOrifice.ssc, based on the standard hydraulic domain included in the Foundation
library. However, to implement a simple thermohydraulic orifice, you can create a domain

Simscape File Types and Structure

model first, t hyd.ssc (a custom hydraulic domain that accounts for fluid temperature),
and then create the component model that references it, MyThhOrifice.ssc, as well as
all the other component models based on this custom domain and needed for modeling
thermohydraulic systems. For an example, see “Custom Library with Propagation of
Domain Parameters” on page 2-131.

The third file type, function files, represents Simscape functions. Simscape functions
model a class of pure first-order mathematical functions with explicit input-output
relationship. Their purpose is to reuse expressions in equations and member declarations
of multiple components.

Model File Structure

Each model is defined in its own file of the same name with a . ssc extension. For
example, MyComponent is defined in MyComponent.ssc. A model may be a domain
model or a component model. Each Simscape file starts with a line specifying the model
class and identifier:

ModelClass Identifier
where

* ModelClass is either domain or component
» Identifier is the name of the model

For example:

domain rotational

or

component spring

A Simscape file splits the model description into the following pieces:

* Interface or Declaration — Declarative section similar to the MATLAB class system
declarations:

* For domain models, declares variables (Across and Through) and parameters

* For component models, declares nodes, inputs and outputs, parameters, and
variables

1-11

1 Simscape Language Fundamentals

* Implementation (only for component models) — Describes run-time functionality of the
model. Implementation consists of the following sections:

* Structure — For composite components, describes how the constituent
components' ports are connected to one another and to the external inputs,
outputs, and nodes of the top-level component. Executed once for each instance of
the component in the top-level model during model compilation.

* Equation — For behavioral components, describes underlying equations. Executed
throughout simulation.

* Events — For discrete event modeling, lets you perform discrete changes on
continuous variables. Executed throughout simulation.

Like the MATLAB class system, these constructs and functions act on a specific instance
of the class. Unlike the MATLAB class system, the object is not passed as the first
argument to function. This reduces syntax with no loss of functionality.

See Also

Related Examples

. “Model Linear Resistor in Simscape Language” on page 1-3

More About

. “What Is the Simscape Language?” on page 1-2

. “Typical Simscape Language Tasks” on page 1-8

. “Creating Custom Components” on page 1-16

. “When to Define a New Physical Domain” on page 1-13

1-12

When to Define a New Physical Domain

When to Define a New Physical Domain

A physical domain provides an environment, defined primarily by its Across and Through
variables, for connecting the components in a Physical Network. Component nodes are
typed by domain, that is, each component node is associated with a unique type of domain
and can be connected only to nodes associated with the same domain.

You do not need to define a new physical domain to create custom components. Simscape
software comes with several predefined domains, such as mechanical translational,
mechanical rotational, electrical, hydraulic, and so on. These domains are included in the
Foundation library, and are the basis of Simscape Foundation blocks, as well as those in
Simscape add-on products (for example, Simscape Fluids™ or Simscape Electrical™
blocks). If you want to create a custom component to be connected to the standard
Simscape blocks, use the Foundation domain definitions. For a complete listing of the
Foundation domains, see “Foundation Domain Types and Directory Structure” on page 6-
2.

You need to define a new domain only if the Foundation domain definitions do not satisfy
your modeling requirements. For example, to enable modeling electrochemical systems,
you need to create a new domain with the appropriate Across and Through variables. If
you need to model a simple thermal hydraulic system, you can create a custom hydraulic
domain that accounts for fluid temperature by supplying a domain-wide parameter (for an
example, see “Propagation of Domain Parameters” on page 2-129).

Once you define a custom physical domain, you can use it for defining nodes in your
custom components. These nodes, however, can be connected only to other nodes of the
same domain type. For example, if you define a custom hydraulic domain as described
above and then use it when creating custom components, you will not be able to connect
these nodes with the regular hydraulic ports of the standard Simscape blocks, which use
the Foundation hydraulic domain definition.

See Also

More About

. “Foundation Domain Types and Directory Structure” on page 6-2
. “How to Define a New Physical Domain” on page 1-14
. “Declare a Mechanical Rotational Domain” on page 2-23

1-13

1 Simscape Language Fundamentals

How to Define a New Physical Domain

1-14

To define a new physical domain, you must declare the Through and Across variables
associated with it. For more information, see “Basic Principles of Modeling Physical
Networks” in the Simscape User's Guide.

A domain file must begin with the domain keyword, followed by the domain name, and be
terminated by the end keyword.

Domain files contain only the declaration section. Two declaration blocks are required:

* The Across variables declaration block, which begins with the variables keyword
and is terminated by the end keyword. It contains declarations for all the Across
variables associated with the domain. A domain model class definition can contain
multiple Across variables, combined in a single variables block.

* The Through variables declaration block, which begins with the
variables(Balancing = true) keyword and is terminated by the end keyword. It
contains declarations for all the Through variables associated with the domain. A
domain model class definition can contain multiple Through variables, combined in a
single variables(Balancing = true) block.

For more information on declaring the Through and Across variables, see “Declare
Through and Across Variables for a Domain” on page 2-8.

The parameters declaration block is optional. If present, it must begin with the
parameters keyword and be terminated by the end keyword. This block contains
declarations for domain parameters. These parameters are associated with the domain
and can be propagated through the network to all components connected to the domain.
For more information, see “Working with Domain Parameters” on page 2-129.

For an example of a domain file, see “Declare a Mechanical Rotational Domain” on page
2-23.

See Also

Related Examples

. “Declare a Mechanical Rotational Domain” on page 2-23

See Also

. “Declare Through and Across Variables for a Domain” on page 2-8

More About

. “When to Define a New Physical Domain” on page 1-13
. “Working with Domain Parameters” on page 2-129

1-15

1 Simscape Language Fundamentals

Creating Custom Components

1-16

In this section...

“Component Types and Prerequisites” on page 1-16
“How to Create a New Component” on page 1-16
“Generating a Custom Block from a Component File” on page 1-17

“Adding a Custom Block Library” on page 1-17

Component Types and Prerequisites

In physical modeling, there are two types of models:

* Behavioral — A model that is implemented based on its physical behavior, described by
a system of mathematical equations. An example of a behavioral block implementation
is the Variable Orifice block.

* Composite — A model that is constructed out of other blocks, connected in a certain
way. An example of a composite, or structural, block implementation is the 4-Way
Directional Valve block (available with Simscape Fluids Isothermal block libraries),
which is constructed based on four Variable Orifice blocks.

Simscape language lets you create new behavioral and composite models when your
design requirements are not satisfied by the libraries of standard blocks provided with
Simscape and its add-on products.

A prerequisite to creating components is having the appropriate domains for the

component nodes. You can use Simscape Foundation domains or create your own, as
described in “How to Define a New Physical Domain” on page 1-14.

How to Create a New Component

To create a new custom component, define a component model class by writing a
component file.

A component file must begin with the component keyword, followed by the component
name, and be terminated by the end keyword.

Component files may contain the following sections, appearing in any order:

Creating Custom Components

* Declaration — Contains all the member class declarations for the component, such as
parameters, variables, nodes, inputs, and outputs. Each member class declaration is a
separate declaration block, which begins with the appropriate keyword
(corresponding to the member class) and is terminated by the end keyword. For more
information, see the component-related sections in “Declaring Domains and
Components” on page 2-3.

» Branches — Establishes the relationship between the component variables and nodes.
This relationship connects the Through and Across variables declared inside the
component to the domain Through and Across variables For more information, see
“Define Relationship Between Component Variables and Nodes” on page 2-27.

* Structure — Declares the component connections for composite models. For more
information, see “Specifying Component Connections” on page 2-82.

* Equation — Declares the component equations for behavioral models. These equations
may be conditional, and are applied throughout the simulation. For more information,
see “Defining Component Equations” on page 2-31.

* Events — Manages the event updates. Event modeling lets you perform discrete
changes on continuous variables. For more information, see “Discrete Event
Modeling” on page 2-67.

* Annotations — Lets you provide annotations in a component file that control various
cosmetic aspects of a Simscape block generated from this component. See
annotations for more information.

Generating a Custom Block from a Component File

After you have created a textual component file, you can deploy it directly into a block
diagram using the workflows described in “Selecting Component File Directly from
Block” on page 4-4. You can control the block name and appearance by using optional
comments in the component file. For more information, see “Customizing the Block Name
and Appearance” on page 4-40.

Adding a Custom Block Library

Adding a custom block library involves creating new components that model the desired
physical behavior and structure. It may involve creating a new physical domain if the
Simscape Foundation domain definitions do not satisfy your modeling requirements.

After you have created the textual component files, convert them into a library of blocks
using the procedure described in “Building Custom Block Libraries” on page 4-30. You

1-17

1 Simscape Language Fundamentals

can control the block names and appearance by using optional comments in the
component file. For more information, see “Customizing the Block Name and
Appearance” on page 4-40.

See Also

Related Examples

. “Mechanical Component — Spring” on page 2-117

. “Electrical Component — Ideal Capacitor” on page 2-119

. “No-Flow Component — Voltage Sensor” on page 2-121

. “Grounding Component — Electrical Reference” on page 2-123
. “Composite Component — DC Motor” on page 2-125

More About

. “What Is the Simscape Language?” on page 1-2
. “Typical Simscape Language Tasks” on page 1-8

. “Declaring Domains and Components” on page 2-3
. “Defining Component Equations” on page 2-31
. “About Composite Components” on page 2-74

. “Building Custom Block Libraries” on page 4-30

1-18

Creating Custom Components and
Domains

* “Declaring Domains and Components” on page 2-3

» “Declare Through and Across Variables for a Domain” on page 2-8
* “Declare Component Variables” on page 2-10

* “Declare Component Parameters” on page 2-16

* “Declare Component Nodes” on page 2-19

* “Declare Component Inputs and Outputs” on page 2-21

* “Declare a Mechanical Rotational Domain” on page 2-23

» “Declare a Spring Component” on page 2-25

* “Define Relationship Between Component Variables and Nodes” on page 2-27
* “Defining Component Equations” on page 2-31

* “Simple Algebraic System” on page 2-38

* “Use Simulation Time in Equations” on page 2-39

* “Initial Equations” on page 2-40

* “Using Conditional Expressions in Equations” on page 2-43

» “Using Intermediate Terms in Equations” on page 2-46

* “Using Lookup Tables in Equations” on page 2-60

* “Programming Run-Time Errors and Warnings” on page 2-63
* “Import Symbolic Math Toolbox Equations” on page 2-65

+ “Discrete Event Modeling” on page 2-67

* “Triggered Delay Component” on page 2-71

* “Enabled Component” on page 2-72

* “About Composite Components” on page 2-74

* “Declaring Member Components” on page 2-75

* “Parameterizing Composite Components” on page 2-77

2 Creating Custom Components and Domains

2-2

“Specifying Initial Target Values for Member Variables” on page 2-80
“Specifying Component Connections” on page 2-82

“Converting Subsystems into Composite Components” on page 2-90
“Defining Component Variants” on page 2-96

“Defining Conditional Visibility of Component Members” on page 2-105
“Component Variants — Series RLC Branch” on page 2-108
“Component Variants — Thermal Resistor” on page 2-111
“Mechanical Component — Spring” on page 2-117

“Electrical Component — Ideal Capacitor” on page 2-119

“No-Flow Component — Voltage Sensor” on page 2-121

“Grounding Component — Electrical Reference” on page 2-123
“Composite Component — DC Motor” on page 2-125

“Working with Domain Parameters” on page 2-129

“Attribute Lists” on page 2-136

“Subclassing and Inheritance” on page 2-141

“Importing Domain and Component Classes” on page 2-143
“Composite Component Using import Statements” on page 2-145

Declaring Domains and Components

Declaring Domains and Components

In this section...

“Declaration Section Purpose” on page 2-3
“Definitions” on page 2-3

“Member Declarations” on page 2-4

“Member Summary” on page 2-5

“Declaring a Member as a Value with Unit” on page 2-6

Declaration Section Purpose

Both domain and component files contain a declaration section:
* The declaration section of a domain file is where you define the Through and Across
variables for the domain. You can also define the domain-wide parameters, if needed.

* The declaration section of a component file is where you define all the variables,
parameters, nodes, inputs, and outputs that you need to describe the connections and
behavior of the component. These are called member declarations.

In order to use a variable, parameter, and so on, in other sections of a component file

(such as branches, equations, and so on), you have to first define it in the declaration
section.

Definitions

The declaration section of a Simscape file may contain one or more member declarations.

Term

Definition

Member

* A member is a piece of a model’s declaration. The collection of all
members of a model is its declaration.

+ It has an associated data type and identifier.

* Each member is associated with a unique member class.
Additionally, members may have some specific attributes.

2-3

2 Creating Custom Components and Domains

Term

Definition

Member class * A member class is the broader classification of a member.

* The following is the set of member classes: variables (domain or
component variables), parameters, inputs, outputs, nodes,
components. The components member class, not to be confused
with the component model class, is discussed in “Declaring
Member Components” on page 2-75.

* Two members may have the same type, but be of different member
classes. For example, a parameter and an input may have the same
data type, but because they are of different member classes, they
behave differently.

Member Declarations

The following rules apply to declaring members:

2-4

Like the MATLAB class system, declared members appear in a declaration block:

<ModelClass> <Identifier>
<MemberClass>
% members here
end

end

Unlike the MATLAB class system, <MemberClass> may take on any of the available
member classes and dictates the member class of the members defined within the
block.

Like the MATLAB class system, each declared member is associated with a MATLAB
identifier, <Identifier>. Unlike the MATLAB class system, members must be
declared with a right-hand side value.

<ModelClass> <Identifier>
<MemberClass>
<Identifier> = <Expression>;
% more members
end

end

<Expression> on the right-hand side of the equal sign (=) is a MATLAB expression. It
could be a constant expression, or a call to a MATLAB function.

Declaring Domains and Components

» The MATLAB class of the expression is restricted by the class of the member being
declared. Also, the data type of the expression dictates data type of the declared
member.

Member Summary

The following table provides the summary of member classes.

Member Applicable Model | MATLAB Class of Expression Writable
Class Classes Expression Meaning
parameters |domain Numerical value with Default value Yes
component unit on page 2-6
variables domain Numerical value with Nominal value and Yes
component unit on page 2-6 default initial
condition
inputs component Scalar, vector, or matrix |Default value, if typed |No
double value with unit
on page 2-6, or
untyped
outputs component Scalar, vector, or matrix |Default value, if typed |No
double value with unit
on page 2-6, or
untyped
nodes component Instance of a node Type of domain No
associated with a
domain
components |component Instance of a component |[Member component |No
class included in a
composite model (see
“Declaring Member
Components” on page
2-75)

2-5

2 Creating Custom Components and Domains

2-6

Declaring a Member as a Value with Unit

In Simscape language, declaration members such as parameters, variables, inputs, and
outputs, are represented as a value with associated unit. The syntax for a value with unit
is essentially that of a two-member value-unit cell array:

{ value , 'unit' }

where value is a real matrix, including a scalar, and unit is a valid unit string, defined in
the unit registry, or 1 (unitless). Depending on the member type, certain restrictions may
apply. See respective reference pages for details.

For example, this is how you declare a parameter as a value with unit:

parl = { value , 'unit' };

As in MATLAB, the comma is not required, and this syntax is equivalent:
parl = { value 'unit' };

To declare a unitless parameter, you can either use the same syntax:
parl = { value , '1l' };

or omit the unit and use this syntax:
parl = value;

Internally, however, this parameter will be treated as a two-member value-unit cell array
{ value , '1' }.

See Also

Related Examples

. “Declare a Spring Component” on page 2-25

. “Declare a Mechanical Rotational Domain” on page 2-23

. “Declare Through and Across Variables for a Domain” on page 2-8
. “Declare Component Variables” on page 2-10

. “Declare Component Parameters” on page 2-16

See Also

“Declaring Domain Parameters” on page 2-129
“Declare Component Nodes” on page 2-19
“Declare Component Inputs and Outputs” on page 2-21

2-7

2 Creating Custom Components and Domains

Declare Through and Across Variables for a Domain

2-8

In a domain file, you have to declare the Through and Across variables associated with
the domain. These variables characterize the energy flow and usually come in pairs, one
Through and one Across. Simscape language does not require that you have the same
number of Through and Across variables in a domain definition, but it is highly
recommended. For more information, see “Basic Principles of Modeling Physical
Networks”.

variables begins an Across variables declaration block, which is terminated by an end
key word. This block contains declarations for all the Across variables associated with the
domain. A domain model class definition can contain multiple Across variables, combined
in a single variables block. This block is required.

Through variables are semantically distinct in that their values have to balance at a node:
for each Through variable, the sum of all its values flowing into a branch point equals the
sum of all its values flowing out. Therefore, a domain file must contain a separate
declaration block for its Through variables, with the Balancing attribute set to true.

variables(Balancing = true) begins a Through variables definition block, which is
terminated by an end key word. This block contains declarations for all the Through
variables associated with the domain. A domain model class definition can contain
multiple Through variables, combined in a single variables(Balancing = true)
block. This block is required.

Each variable is defined as a value with unit on page 2-6:
domain varl = { value , 'unit' };

value is the initial value. unit is a valid unit string, defined in the unit registry. See
“Declare a Mechanical Rotational Domain” on page 2-23 for more information.

See Also

Related Examples
. “Declare a Mechanical Rotational Domain” on page 2-23
. “Declare Component Variables” on page 2-10

See Also

. “Declare Component Nodes” on page 2-19

. “Declaring Domain Parameters” on page 2-129
More About

. “Declaring Domains and Components” on page 2-3

2-9

2 Creating Custom Components and Domains

Declare Component Variables

2-10

In this section...

“Through and Across Component Variables” on page 2-10
“Internal Component Variables” on page 2-10

“Variable Priority for Model Initialization” on page 2-11
“Nominal Value and Unit for a Variable” on page 2-13

Through and Across Component Variables

When you declare Through and Across variables in a component, you are essentially
creating instances of domain Through and Across variables. You declare a component
variable as a value with unit on page 2-6 by specifying an initial value and units
commensurate with units of the domain variable.

The following example initializes the Through variable t (torque) as 0 N*m:

variables
t={0, 'N*m' };
end

Note After you declare component Through and Across variables, you have to specify
their relationship with component nodes, and therefore with the domain Through and
Across variables. For more information, see “Define Relationship Between Component
Variables and Nodes” on page 2-27.

Internal Component Variables

You can also declare an internal component variable as a value with unit on page 2-6. You
can use such internal variables throughout the component file, for example, in the
equations section or in the intermediate term declarations. Component variables are
also used in the model initialization process, as described in “Variable Priority for Model
Initialization” on page 2-11.

The following example declares and initializes three variables:

variables
f={0, 'N'" }; % Force

Declare Component Variables

\"
X
end

'm/s' }; % Velocity
'm' }; % Spring deformation

{ 0’
{ 0’

Force and velocity are the component Through and Across variables, later to be
connected to the domain Through and Across variables using the branches section.
Spring deformation is an internal component variable, to be used for model initialization.

You can declare internal component variables of type integer or real as event variables by
setting the Event=true attribute. For more information, see “Event Variables” on page
2-67.

Variable Priority for Model Initialization

When you generate a custom Simscape block from a component file, the Variables tab of
this block will list all the public variables specified in the underlying component file, along
with the initialization priority, target initial value, and unit of each variable. The block
user can change the variable priority and target, prior to simulation, to affect the model
initialization. For more information, see “Variable Initialization”.

The default values for variable priority, target value, and unit come from the variable
declaration in the component file. Specifying an optional comment lets you control the
variable name in the block dialog box. For more information, see “Specify Meaningful
Names for the Block Parameters and Variables” on page 4-44.

Note For variables with temperature units, there is an additional consideration of
whether to apply linear or affine conversion when the block user changes the unit in the
Variables tab of the block dialog box. Use the Conversion attribute in the same way as
for the block parameters. For details, see “Parameter Units” on page 2-16.

In most cases, it is sufficient to declare a variable just as a value with unit on page 2-6,
omitting its priority, which is equivalent to priority = priority.none. The block
user can set the variable priority, as needed, in the Variables tab of the block dialog box
prior to simulation.

In some cases, however, setting a variable to a certain priority by default is essential to
the correct operation of the component. To specify a high or low default priority for a
component variable, declare the variable as a field array. For example, the following
declaration initializes variable x (spring deformation) as 0 mm, with high priority:

2-11

2 Creating Custom Components and Domains

2-12

variables
x = { value = {0, 'm'" }, priority = priority.high }; % Spring deformation
end

In this case, the Spring deformation variable will appear in the Variables tab of the
block dialog box with the default priority High and the default target value and unit 0
mm, but the block user can change the variable priority and target as usual.

If you want a variable to always have high initialization priority, without letting the block
user to change it, declare the variable as private:

variables(Access=private)
x = { value = {0, 'm'" }, priority = priority.high };
end

In this case, the block user does not have control over the variable priority or
initialization target, because private variables do not appear in the Variables tab of the
block dialog box.

If you want the variable to always have a certain initialization priority, such as High, but
let the block user specify the target value, declare the variable as private and tie it to an
initialization parameter:

parameters
p={06, 'm" }; % Initial deformation
end

variables(Access=private)
x = {value = p, priority = priority.high };
end

In this case, the value of the Initial deformation parameter, specified by the block user,
is assigned as the initial target to variable x, with high initialization priority. Depending
on the results of the solve, this target may or may not be satisfied when the solver
computes the initial conditions for simulation. For more information, see “Initial
Conditions Computation”.

For composite components, member components are declared as hidden and therefore
their variables do not appear in the Variables tab of the block dialog box. However, you
can use a top-level parameter to let the block user specify the initial target value of a
member component variable. For more information, see “Specifying Initial Target Values
for Member Variables” on page 2-80.

Declare Component Variables

Nominal Value and Unit for a Variable

Nominal values provide a way to specify the expected magnitude of a variable in a model,
similar to specifying a transformer rating, or setting a range on a voltmeter. For more
information, see “System Scaling by Nominal Values”.

Each model has an underlying table of nominal value-unit pairs. In general, all variables
in a model are scaled based on the nominal value corresponding to their physical unit.
You can override this scaling for an individual variable in a component file by providing a
nominal value and unit as a variable declaration attribute.

variables
x = { value = { value , 'unit' }, nominal = {value, 'unit'} };
end

When you generate a custom Simscape block from a component file, nominal value and
unit form the nominal declaration attribute translate into default values for block
parameters x nominal and x nominal unit (where x is the variable name).

For example, this variable declaration:
variables
i={value={0, '"A" }, nominal = {1, 'mA'} }; % Current
end
produces the following default values for block parameters:

* 1 nominal value, with a value of '1"'
* i nominal unit, with a value of 'mA’

and looks like this in the Property Inspector.

2-13

2 Creating Custom Components and Domains

Property Inspector 8 x
Linear Resistor: Simscape Component

Settings Description

Component Path my_resistor_nom
Parameters
+ Variables
¥ Current
hd |:| Initial {Using Default Settings)
Priarity MNone
Value 0| A

b |:| Mominal {Using Default Settings)

Value 1 A
Voltage
Logging

Note MathWorks recommends that you use the nominal attribute sparingly. The default
nominal values, which come from the model value-unit table, are suitable in most cases.
The block user can also modify the nominal values and units for individual blocks by using
either the Property Inspector or set _param and get param functions, if needed. For
more information, see “Modify Nominal Values for a Block Variable”.

See Also

Related Examples

2-14

“Declare a Spring Component” on page 2-25

“Declare Through and Across Variables for a Domain” on page 2-8
“Declare Component Parameters” on page 2-16

“Declaring Domain Parameters” on page 2-129

“Declare Component Nodes” on page 2-19

See Also

. “Declare Component Inputs and Outputs” on page 2-21
More About
. “Declaring Domains and Components” on page 2-3

2-15

2 Creating Custom Components and Domains

Declare Component Parameters

2-16

In this section...

“Parameter Units” on page 2-16

“Case Sensitivity” on page 2-17

Component parameters let you specify adjustable parameters for the Simscape block
generated from the component file. Parameters will appear in the block dialog box and
can be modified when building and simulating a model.

You declare each parameter as a value with unit on page 2-6. Specifying an optional
comment lets you control the parameter name in the block dialog box. For more
information, see “Specify Meaningful Names for the Block Parameters and Variables” on
page 4-44.

The following example declares parameter k, with a default value of 10 N*m/rad,
specifying the spring rate of a rotational spring. In the block dialog box, this parameter
will be named Spring rate.

parameters
k = { 10, 'N*m/rad' }; % Spring rate
end

Parameter Units

When you declare a component parameter, use the units that make sense in the context of
the block application. For example, if you model a solenoid, it is more convenient for the
block user to input stroke in millimeters rather than in meters. When a parameter is used
in equations and other sections of a component file, Simscape unit manager handles the
conversions.

With temperature units, however, there is an additional issue of whether to apply linear or
affine conversion (see “Thermal Unit Conversions”). Therefore, when you declare a
parameter with temperature units, you can specify only nonaffine units (kelvin or
rankine). When the block user enters the parameter value in affine units (Celsius or
Fahrenheit), this value is automatically converted to the units specified in the parameter
declaration. By default, affine conversion is applied. If a parameter specifies relative,
rather than absolute, temperature (in other words, a change in temperature), set its
Conversion attribute to relative (for details, see “Member Attributes” on page 2-137).

Declare Component Parameters

Note Member attributes apply to a whole declaration block. If some of your parameters
are relative and others are absolute, declare them in separate blocks. You can have more
than one declaration block of the same member type within a Simscape file.

Case Sensitivity

Simscape language is case-sensitive. This means that member names may differ only by
case. However, Simulink® software is not case-sensitive. Simulink parameter names (that
is, parameter names in a block dialog box) must be unique irrespective of case. Therefore,
if you declare two parameters whose names differ only by case, such as

component MyComponent

parameters
A=0;
a=0;
end
end

you will not be able to generate a block from this component.

However, if one of the parameters is private or hidden, that is, does not appear in the
block dialog box,

component MyComponent
parameters (Access=private)

A=0;
end
parameters

a=0;
end

end

then there is no conflict in the Simulink namespace and no problem generating the block
from the component source.

Public component variables also appear in the block dialog box, on the Variables tab,
because they are used for model initialization. These variables therefore compete with
each other and with the block parameter names in the Simulink namespace. If a
component has a public variable and a parameter whose names differ only by case, such
as

component MyComponent
variables

2-17

2 Creating Custom Components and Domains

A=0;
end
parameters

a=20;
end

end

you will not be able to generate a block from this component. As a possible workaround,
you can declare the variable as private or hidden. In this case, the variable does not
appear on the Variables tab of the resulting block dialog, and therefore there is no
namespace conflict. However, if you want to be able to use the variable in the model
initialization process, keep it public and change its name, or the name of the parameter.

The case-sensitivity restriction applies only to component parameters and public
component variables, because other member types do not have an associated Simulink
entity, and are therefore completely case-sensitive.

See Also

Related Examples

. “Declare a Spring Component” on page 2-25

. “Declare Component Variables” on page 2-10

. “Declare Component Nodes” on page 2-19

. “Declare Component Inputs and Outputs” on page 2-21
More About

. “Declaring Domains and Components” on page 2-3

. “Enumerations” on page 3-14

2-18

Declare Component Nodes

Declare Component Nodes

Component nodes define the conserving ports of a Simscape block generated from the
component file. The type of the conserving port (electrical, mechanical rotational, and so
on) is determined by the type of its parent domain. The domain defines which Through
and Across variables the port can transfer. Conserving ports of Simscape blocks can be
connected only to ports associated with the same domain. For more information, see
“Basic Principles of Modeling Physical Networks”.

When declaring nodes in a component, you have to associate them with an existing
domain. Once a node is associated with a domain, it:

* Carries each of the domain Across variables as a measurable quantity
* Writes a conserving equation for each of the domain Through variables

For more information, see “Define Relationship Between Component Variables and
Nodes” on page 2-27.

You need to refer to the domain name using the full path starting with the top package
directory. For more information on packaging your Simscape files, see “Building Custom
Block Libraries” on page 4-30.

The following example uses the syntax for the Simscape Foundation mechanical rotational
domain:

nodes
r = foundation.mechanical.rotational.rotational;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

If you want to use your own customized rotational domain called rotational.ssc and
located at the top level of your custom package directory +MechanicalElements, the
syntax would be:

nodes

r = MechanicalElements.rotational;
end

2-19

2 Creating Custom Components and Domains

2-20

Note Components using your own customized rotational domain cannot be connected
with the components using the Simscape Foundation mechanical rotational domain. Use
your own customized domain definitions to build complete libraries of components to be
connected to each other.

Specifying an optional comment lets you control the port label and location in the block
icon. For more information, see “Customize the Names and Locations of the Block Ports”
on page 4-46. In the following example, the electrical conserving port will be labelled +
and will be located on the top side of the block icon.

nodes

p = foundation.electrical.electrical; % +:top
end
See Also

Related Examples

. “Declare a Spring Component” on page 2-25

. “Declare a Mechanical Rotational Domain” on page 2-23

. “Declare Through and Across Variables for a Domain” on page 2-8
. “Declare Component Variables” on page 2-10

. “Declare Component Parameters” on page 2-16

. “Declare Component Inputs and Outputs” on page 2-21

More About

. “Declaring Domains and Components” on page 2-3

Declare Component Inputs and Outputs

Declare Component Inputs and Outputs

In addition to conserving ports, Simscape blocks can contain Physical Signal input and
output ports, directional ports that carry signals with associated units. These ports are
defined in the inputs and outputs declaration blocks of a component file. Each input or
output can be defined as:

* A value with unit on page 2-6, where value can be a scalar, vector, or matrix. For a
vector or a matrix, all signals have the same unit.

* An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block
icon. For more information, see “Customize the Names and Locations of the Block Ports”
on page 4-46.

This example declares an input port s, with a default value of 1 Pa, specifying the control
port of a hydraulic pressure source. In the block diagram, this port will be named
Pressure and will be located on the top side of the block icon.

inputs
s={1, 'Pa' }; % Pressure:top
end

The next example declares an output port v as a 3-by-3 matrix of linear velocities.

outputs
v = {zeros(3), 'm/s'};
end

You can also reference component parameters in input and output declarations. For
example, you can control the signal size by using a block parameter:

component MyTransformer

parameters
N = 3; % Number of windings
end
inputs
I = {zeros(N, 1), 'A'};
end

end

The following example declares an input port I and output port 0 as untyped identifiers.
In the block diagram, the output port will be located on the right side of the block icon.

2-21

2 Creating Custom Components and Domains

2-22

The block propagates the unit and size of the physical signal. For more information, see
“Physical Signal Unit Propagation”.

inputs
I;
end
outputs
0; % :right
end
See Also

Related Examples

. “Declare a Spring Component” on page 2-25

. “Declare Component Variables” on page 2-10

. “Declare Component Parameters” on page 2-16

. “Declare Component Nodes” on page 2-19

More About

. “Declaring Domains and Components” on page 2-3

. “Physical Signal Unit Propagation”

Declare a Mechanical Rotational Domain

Declare a Mechanical Rotational Domain

The following file, named rotational. ssc, declares a mechanical rotational domain,
with angular velocity as an Across variable and torque as a Through variable.

domain rotational
Define the mechanical rotational domain
in terms of across and through variables

)
“©
)

“©

variables
w={1, 'rad/s' }; % angular velocity
end

variables(Balancing = true)
t={1, 'N*m' }; % torque
end

end

Note This domain declaration corresponds to the Simscape Foundation mechanical
rotational domain. For a complete listing of the Foundation domains, see “Foundation
Domain Types and Directory Structure” on page 6-2.

In a component, each node associated with this domain will:

» Carry a measurable variable w (angular velocity)
* Conserve variable t (torque)

For more information, see “Define Relationship Between Component Variables and
Nodes” on page 2-27.

See Also
Related Examples

. “Declare Through and Across Variables for a Domain” on page 2-8
. “Declaring Domain Parameters” on page 2-129

2-23

2 Creating Custom Components and Domains

More About

. “Declaring Domains and Components” on page 2-3

2-24

Declare a Spring Component

Declare a Spring Component

The following diagram shows a network representation of a mass-spring-damper system,

consisting of four components (mass, spring, damper, and reference) in a mechanical
rotational domain.

T rotational.ssc T

GO0 e +— e

spring.asc l damper . s5c

TI e ot reference . ssc
\Eg; I x.; \JE;

The domain is declared in a file named rotational. ssc (see “Declare a Mechanical
Rotational Domain” on page 2-23). The following file, named spring.ssc, declares a
component called spring. The component contains:

Two rotational nodes, r and c (for rod and case, respectively)
Parameter k, with a default value of 10 N*m/rad, specifying the spring rate

Through and Across variables, torque t and angular velocity w, later to be related to
the Through and Across variables of the rotational domain

Internal variable theta, with a default value of @ rad, specifying relative angle, that
is, deformation of the spring

component spring

nodes
r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;
end
parameters
k = { 10, 'N*m/rad' }; % spring rate
end
variables

theta = { 0, 'rad' }; % introduce new variable for spring deformation

2-25

2 Creating Custom Components and Domains

t

w

end

% branches here

% equations here
end

{ 06, 'N*m' }; % torque through
{ 0, 'rad/s' }; % velocity across

Note This example shows only the declaration section of the spring component. For a
complete file listing of a spring component, see “Mechanical Component — Spring” on
page 2-117.

See Also

Related Examples

. “Declare a Spring Component” on page 2-25

. “Declare Component Variables” on page 2-10

. “Declare Component Parameters” on page 2-16

. “Declare Component Nodes” on page 2-19

. “Declare Component Inputs and Outputs” on page 2-21
More About

. “Declaring Domains and Components” on page 2-3

2-26

Define Relationship Between Component Variables and Nodes

Define Relationship Between Component Variables and
Nodes

In this section...

“Connecting Component Variables to the Domain” on page 2-27
“Workflow from Domain to Component” on page 2-27

“Connecting One Through and One Across Variable” on page 2-29
“Connecting Two Through and Two Across Variables” on page 2-29

Connecting Component Variables to the Domain

After you declare the component Through and Across variables on page 2-10, you need to
connect them to the domain Through and Across variables. You do this by establishing the
relationship between the component variables and its nodes, which carry the Through
and Across variables for the domain:

» To establish the relationship between the Through variables, use the branches
section of the component file. If the component has multiple nodes, indicate branches
by writing multiple statements in the branches section. For syntax and examples, see
the branches on page 5-13 reference page.

* To establish the relationship between the Across variables, use the equations section
of the component file. Add an equation that connects the component Across variable
with the respective variables at the component nodes. If there is more than one Across
variable, add multiple equations, connecting each variable with its respective nodes.
The equations section can also contain other equations that define the component
action. For more information, see “Defining Component Equations” on page 2-31.

Workflow from Domain to Component

Propagate the domain Through and Across variables into a component.

1 Declare the Across and Through variables in a domain file (or use an existing domain;
for a complete listing of the Foundation domains, see “Foundation Domain Types and
Directory Structure” on page 6-2).

For example, the following domain file, named rotational.ssc, declares angular
velocity, w, as an Across variable and torque, t, as a Through variable.

2-27

2 Creating Custom Components and Domains

2-28

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

variables
w={1, 'rad/s' }; % angular velocity
end

variables(Balancing = true)
t={1, 'N*m' }; % torque
end

end

Declare the nodes in a component file and associate them with the domain, for
example:

nodes
nodel = MyPackage.rotational;
node2 = MyPackage.rotational;
end

Once a node is associated with a domain, it:

* Carries each of the domain Across variables as a measurable quantity. In this
example, each of the nodes carries one Across variable, w.

* Writes a conserving equation for each of the domain Through variables. In this
example, there is one Through variable, t, and therefore each node writes one
conserving equation. A conserving equation is a sum of terms that is set to zero
(node.t == 0).The branches on page 5-13 section in the component file
establishes the terms that are summed to zero at the node.

Declare the corresponding variables in the component file, for example:
variables

w {1, 'rad/s' };
t {1, 'N*m' };

angular velocity
torque

[
“©
[

“©

end

The names of the component variables do not have to match those of the domain
Across and Through variables, but the units must be commensurate. At this point,
there is no connection between the component variables and the domain variables.

Establish the relationship between the Through variables by using the branches
section of the component file. For example:

Define Relationship Between Component Variables and Nodes

branches
t : nodel.t -> node2.t; % t - Through variable from nodel to node2
end

This branch statement declares that t flows from nodel to node2. Therefore, t is
subtracted from the conserving equation identified by nodel. t, and t is added to the
conserving equation identified by node2. t. For more information and examples, see
the branches on page 5-13 reference page.

Establish relationship between the Across variables in the equations section of the
component file, for example, by adding the following equation:

equations
w == nodel.w - node2.w; % w - Across variable between nodel and node2
[...] % more equations describing the component behavior, as necessary
end

Connecting One Through and One Across Variable

In this example, r and c are rotational nodes, while t and w are component variables for
torque and angular velocity, respectively. The relationship between the variables and
nodes is established in the branches and the equations sections:

component spring
nodes

r
C

foundation.mechanical.rotational.rotational;
foundation.mechanical.rotational.rotational;

end
[...]
variables
[...]
t=4{0, '"N*m' }; % torque through
w={0, 'rad/s' }; % velocity across
end
branches
t:r.t ->c.t; % t - Through variable from r to ¢
end
equations
W == Tr.w - C.w; % W - Across variable between r and c
[...] % more equations here
end
end

Connecting Two Through and Two Across Variables

This example shows setting up the Across and Through variables of a component with two
electrical windings, such as a transformer or mutual inductor. The component has four
electrical nodes, and each winding has its own voltage and current variables. The

2-29

2 Creating Custom Components and Domains

relationship between the variables and nodes is established in the branches and the
equations sections:

component two windings

nodes
pl = foundation.electrical.electrical;
nl = foundation.electrical.electrical;
p2 = foundation.electrical.electrical;
n2 = foundation.electrical.electrical;
end
[...]
variables
il = {0, 'A' };
vi=4{0, 'V'};
i2 = {0, ‘A" };
v2 =4{0, 'V'};
end
[...]
branches

il : pl.i -> nl.i;
i2 : p2.1 -> n2.i;

end

equations
vl == pl.v - nl.v;
V2 == p2.vV - n2.v;
[...1]

end

end

Current through first winding
Current through second winding

o® o°

Voltage across first winding
Voltage across second winding
more equations here

o® o° o°

2-30

Defining Component Equations

Defining Component Equations

In this section...

“Equation Section Purpose” on page 2-31

“Specifying Mathematical Equality” on page 2-31

“Use of Relational Operators in Equations” on page 2-33
“Equation Dimensionality” on page 2-35

“Equation Continuity” on page 2-36

“Working with Physical Units in Equations” on page 2-36

Equation Section Purpose

The purpose of the equation section is to establish the mathematical relationships among
a component’s variables, parameters, inputs, outputs, time and the time derivatives of
each of these entities. The equation section of a Simscape file is executed throughout the
simulation.

Note You can also specify equations that are executed during model initialization only, by
using the (Initial=true) attribute. For more information, see “Initial Equations” on
page 2-40.

A Simscape language equation consists of two expressions connected with the ==
operator. Unlike the regular assignment operator (=), the == operator specifies
continuous mathematical equality between the two expressions (for more information, see
“Specifying Mathematical Equality” on page 2-31). The equation expressions may be
constructed from any of the identifiers defined in the model declaration. You can also
access global simulation time from the equation section using the time function.

For a list of MATLAB functions that you can use in the equation section, see Supported
Functions.

Specifying Mathematical Equality

Simscape language stipulates semantically that all the equation expressions returned by
the equation section of a Simscape file specify continuous mathematical equality between
two expressions. Consider a simple example:

2-31

2 Creating Custom Components and Domains

equations
Expressionl == Expression2;
end

Here we have declared an equality between Expressionl and Expression2. The left-
and right-hand side expressions are any valid MATLAB expressions (see the next section
on page 2-33 for restrictions on using the relational operators: ==, <, >, <=, >=, ~=, &§,

| |- The equation expressions may be constructed from any of the identifiers defined in

the model declaration.

The equation is defined with the == operator. This means that the equation does not
represent assignment but rather a symmetric mathematical relationship between the left-
and right-hand operands. Because == is symmetric, the left-hand operand is not
restricted to just a variable. For example:

component MyComponent
[...]

variables
a=1;
b =1;
c=1;
end
equations
a+b==nc;
end
end

The following example is mathematically equivalent to the previous example:

component MyComponent
[...]

variables
a=1;
b =1;
c=1;
end
equations
O0==c-a - b;
end
end

2-32

Defining Component Equations

Note Equation expressions must be terminated with a semicolon or a newline. Unlike
MATLAB, the absence of a semicolon makes no difference. In any case, Simscape
language does not display the result as it evaluates the equation.

Use of Relational Operators in Equations

In the previous section on page 2-31 we discussed how == is used to declare
mathematical equalities. In MATLAB, however, == yields an expression like any other
operator. For example:

(a==1b) *c;

where a, b, and ¢ represent scalar double values, is a legal MATLAB expression. This
would mean, take the Logical value generated by testing a’s equivalence to b, coerce
this value to a double and multiply by c. If a is the same as b, then this expression will
return c. Otherwise, it will return 0.

On the other hand, in MATLAB we can use == twice to build an expression:
a == b == C;

This expression is ambiguous, but MATLAB makes == and other relational operators left
associative, so this expression is treated as:

(a ==) == C’

The subtle difference between (a == b) == canda == (b == c) can be significant
in MATLAB, but is even more significant in an equation. Because the use of == is
significant in the Simscape language, and to avoid ambiguity, the following syntax:

component MyComponent
.1

equations

a == b == C;
end
end

is illegal in the Simscape language. You must explicitly associate top-level occurrences of
relational operators. Either

component MyComponent
[...]

equations

2-33

2 Creating Custom Components and Domains

end
end

or

component MyComponent

[...]

equations
a == (b == C);
end
end

are legal. In either case, the quantity in the parentheses is equated to the quantity on the
other side of the equation.

With the exception of the top-level use of the == operator, == and other relational
operators are left associative. For example:

component MyComponent

[...]

parameters
a=1;

b =1;

c = false;
end
variables

d =1;
end
equations

(a==b==1c) =d;
end

end

is legal and interpreted as:

component MyComponent
[...]

parameters
a=1;

b =1;

c = false;
end
variables

d=1;

2-34

Defining Component Equations

end
equations
((a ==) ==) == d;
end
end

Equation Dimensionality

The expressions on either side of the == operator need not be scalar expressions. They
must be either the same size or one must be scalar. For example:

equations
[...1]
<3x3 Expression> == <3x3 Expression>;

[...]

end
is legal and introduces 9 scalar equations. The equation expression:

equations
[...]
<1x1l Expression> == <3x3 Expression>;

[...]

end

is also legal. Here, the left-hand side of the equation is expanded, via scalar expansion,
into the same expression replicated into a 3x3 matrix. This equation expression also
introduces 9 scalar equations.

However, the equation expression:

equations
[...1]
<2x3 Expression> == <3x2 Expression>;

[...]

end

is illegal because the sizes of the expressions on the left- and right-hand side are
different.

2-35

2 Creating Custom Components and Domains

Equation Continuity

The equation section is evaluated in continuous time. Some of the values that are
accessible in the equation section are themselves piecewise continuous, that is, they
change continuously in time. These values are:

* variables

* inputs

* outputs

* time

Piecewise continuous indicates that values are continuous over compact time intervals
but may change value at certain instances. The following values are continuous, but not
time-varying:

* parameters

* constants

Time-varying countable values, for example, integer or logical, are never continuous.

Continuity is propagated like a data type. It is propagated through continuous functions
(see Supported Functions).

Working with Physical Units in Equations

In Simscape language, you declare members (such as parameters, variables, inputs, and
outputs) as value with unit on page 2-6, and the equations automatically handle all unit
conversions.

However, empirical formulae often employ noninteger exponents where the base is either
unitless or in known units. When working with these types of formulae, convert the base
to a unitless value using the value function and then reapply units if needed.

For example, the following formula gives the pressure drop, in Pa, in terms of flow rate, in
m”™3/s:

p ==k * q"1.023

where p is pressure, q is flow rate and k is some unitless constant. To write this formula in
Simscape language, use:

2-36

See Also

p==4{ Kk * value(q, 'm™3/s')"1.023, 'Pa' }

This approach works regardless of the actual units of p or g, as long as they are
commensurate with pressure and volumetric flow rate, respectively. For example, the
actual flow rate can be in gallons per minute, the equation will still work and handle the
unit conversion automatically.

See Also

Related Examples
. “Simple Algebraic System” on page 2-38

. “Use Simulation Time in Equations” on page 2-39

More About

. “Using Conditional Expressions in Equations” on page 2-43
. “Using Intermediate Terms in Equations” on page 2-46

. “Using Lookup Tables in Equations” on page 2-60
. “Programming Run-Time Errors and Warnings” on page 2-63

2-37

2 Creating Custom Components and Domains

Simple Algebraic System

This example shows implementation for a simple algebraic system:

X = 2y
The Simscape file looks as follows:

component MyAlgebraicSystem

outputs
X = 0;
y = 0;
end
equations
y == X"2; %Yy = X"2
X=2%*y -1, $x=2%*y -1
end
end
See Also
Related Examples
. “Use Simulation Time in Equations” on page 2-39
More About
. “Defining Component Equations” on page 2-31
. “Using Conditional Expressions in Equations” on page 2-43
. “Using Intermediate Terms in Equations” on page 2-46

. “Using Lookup Tables in Equations” on page 2-60
. “Programming Run-Time Errors and Warnings” on page 2-63

2-38

Use Simulation Time in Equations

Use Simulation Time in Equations

You can access global simulation time from the equation section using the time function.

time returns the simulation time in seconds.

The following example illustrates y = sin (wt), where t is simulation time:

component
parameters
w={1,
end
outputs
y =0;
end
equations
y == sin(w * time);
end
end

'1l/s' } % omega

See Also

Related Examples
. “Simple Algebraic System” on page 2-38

More About

. “Defining Component Equations” on page 2-31

. “Using Conditional Expressions in Equations” on page 2-43
. “Using Intermediate Terms in Equations” on page 2-46

. “Using Lookup Tables in Equations” on page 2-60

. “Programming Run-Time Errors and Warnings” on page 2-63

2-39

2 Creating Custom Components and Domains

Initial Equations

2-40

Regular equations are executed throughout the simulation. The (Initial=true)
attribute lets you specify additional equations that are executed during model
initialization only.

Regular component equations alone are not sufficient to initialize a DAE system. Consider
a system with n continuous differential variables and m continuous algebraic variables.
For simulation, this system has n+m degrees of freedom and must provide n+m equations.
The initialization problem has up to n additional unknowns that correspond to the
derivative variables. These additional unknowns can be satisfied when you specify initial
targets for block variables. Initial equations provide another way to initialize a system.

In general, the maximum number of high-priority targets you can specify is equal to the
number of additional unknowns in the initialization problem. Besides the unknowns from
differential variables, the initialization problem also has one more unknown for each
event variable. These additional unknowns determine the maximum combined number of
initial equations and high-priority variable targets. If there are too many high-priority
targets, these cannot all be met. For more information, see “Block-Level Variable
Initialization”.

Because the default value of the Initial attribute for equations is false, you can omit
this attribute when declaring regular equations:

equations (Initial = true) % initial equations
[...]
end

equations (Initial
[...]
end

false) % regular equations

equations % regular equations

[...]
end

The syntax of initial equations is the same as that of regular equations, except:

* der(x) in initial equations is treated as an unknown value and is solved for during
initialization.

* delay and integ operators are disallowed.

Initial Equations

When you include assert constructs in initial equations, their predicate conditions are
checked only once, after solving for initial conditions (before the start of simulation, see
“Initial Conditions Computation”). Use these assertions to safeguard against the model

initializing with nonphysical values. For more information, see “Programming Run-Time
Errors and Warnings” on page 2-63.

A common use case for specifying initial equations is to initialize a system in steady state,
for example:

component C

parameters
a={-5 'l/s'};
b {-25 Il/sl};
end

outputs
X

y
end

5;
10;

equations
der(x) == a*x + b*y;
der(y) == b*y;

end

equations(Initial=true)
der(x) == 0;
der(y) == 0;
end
end

At initialization time, the equations are:

der(x) == 0;

der(y) == 0;

der(x) == a*x + b*y;
der(y) == b*y;

For the rest of the simulation, the equations are:

der(x) == a*x + b*y;
der(y) == b*y;

2-41

2 Creating Custom Components and Domains

2-42

See Also

More About

“Defining Component Equations” on page 2-31

“Using Conditional Expressions in Equations” on page 2-43
“Using Intermediate Terms in Equations” on page 2-46
“Using Lookup Tables in Equations” on page 2-60
“Programming Run-Time Errors and Warnings” on page 2-63

Using Conditional Expressions in Equations

Using Conditional Expressions in Equations

In this section...

“Statement Syntax” on page 2-43
“Restrictions” on page 2-44
“Example” on page 2-44

Statement Syntax
You can specify conditional equations by using if statements.

equations

[...]

if Expression
[...]

elseif Expression
[...]

else
[...]

end

[...]
end

Each [...] section may contain one or more equation expressions.

You can nest if statements, for example:

equations
[...]
if Expression
[...]
if Expression
[...]
else
[...]
end
else
[...]
end

[...]
end

2-43

2 Creating Custom Components and Domains

2-44

Restrictions

» Every if requires an else.

* The total number of equation expressions, their dimensionality, and their order must
be the same for every branch of the if-elseif-else statement. However, this rule
does not apply to the assert expressions, because they are not included in the
expression count for the branch.

Example

For a component where x and y are declared as 1x1 variables, specify the following
piecewise equation:

x for-1< =x< =1
~ |x2 otherwise
This equation, written in the Simscape language, would look like:
equations
if x >= -1 & x <=1
y == X;

== XAZ ’

Another way to write this equation in the Simscape language is:

equations
y == if x>=-1 && x<=1, x else x*2 end
end
See Also
More About
. “Defining Component Equations” on page 2-31
. “Using Intermediate Terms in Equations” on page 2-46

See Also

“Using Lookup Tables in Equations” on page 2-60
“Programming Run-Time Errors and Warnings” on page 2-63

2-45

2 Creating Custom Components and Domains

Using Intermediate Terms in Equations

2-46

In this section...

“Why Use Intermediate Terms?” on page 2-46
“Declaring and Using Named Intermediate Terms” on page 2-48

“Using the let Expressions” on page 2-51

Why Use Intermediate Terms?

Textbooks often define certain equation terms in separate equations, and then substitute
these intermediate equations into the main one. For example, for fully developed flow in
ducts, the Darcy friction factor can be used to compute pressure loss:

=f-L'p'V2

P 7D

where P is pressure, f is the Darcy friction factor, L is length, p is density, V is flow
velocity, and D is hydraulic area.

These terms are further defined by:

0.316
f_
Rel/4
o= D'V
D
p= %
II
=4
V=12

where Re is the Reynolds number, A is the area, g is volumetric flow rate, and v is the
kinematic viscosity.

In Simscape language, there are two ways that you can define intermediate terms for use
in equations:

Using Intermediate Terms in Equations

* intermediates section — Declare reusable named intermediate terms in the
intermediates section in a component or domain file. You can reuse these
intermediate terms in any equations section within the same component file, in an
enclosing composite component file, or in any component that has nodes of that
domain type.

+ let expressions in the equations section — Declare intermediate terms in the
declaration clause and use them in the expression clause of the same let expression.
Use this method if you need to define intermediate terms of limited scope, for use in a
single group of equations. This way, the declarations and equations are close together,
which improves code readability.

Another advantage of using named intermediate terms instead of let expressions is that
you can include named intermediate terms in simulation data logs.

The following example shows the same Darcy-Weisbach equation with intermediate terms
written out in Simscape language:

component MyComponent
[...]

parameters
L ={1, 'm' }; % Length
rho = { 1e3, 'kg/m"3' }; % Density
nu = { le-6, 'm™2/s' }; % Kinematic viscosity
end
variables
p ={ 0, 'Pa' }; % Pressure
q ={0, 'm3/s' }; % Volumetric flow rate
A ={ 0, 'm2' }; % Area
end
intermediates
f = 0.316 / Re _d"0.25; % Darcy friction factor
Red=Dh*V/ nu; % Reynolds number
Dh =sqrt(4.0 * A/ pi); % Hydraulic diameter
v =q/ A; % Flow velocity
end
equations
p==f*L*rho *V*2/ (2 *Dh); % final equation
end
end

end

After substitution of all intermediate terms, the final equation becomes:

p==0.316/(sqrt(4.0 * A / pi) *q / A/ nu)"0.25 * L * rho * (q / A)"2 / (2 * sqrt(4.0 * A / pi));

2-47

2 Creating Custom Components and Domains

2-48

When you use this component in a model and log simulation data, the logs will include
data for the four intermediate terms, with their descriptive names (such as Darcy
friction factor) shown in the Simscape Results Explorer.

Declaring and Using Named Intermediate Terms

The intermediates section in a component file lets you define named intermediate
terms for use in equations. Think of named intermediate terms as of defining an alias for
an expression. You can reuse it in any equations section within the same file or an
enclosing composite component. When an intermediate term is used in an equation, it is
ultimately substituted with the expression that it refers to.

You can also include an intermediates section in a domain file and reuse these
intermediate terms in any component that has nodes of that domain type.

Syntax Rules and Restrictions

You declare an intermediate term by assigning a unique identifier on the left-hand side of
the equal sign (=) to an expression on the right-hand side of the equal sign.

The expression on the right-hand side of the equal sign:

* Can refer to other intermediate terms. For example, in the Darcy-Weisbach equation,
the identifier Re d (Reynolds number) is used in the expression declaring the
identifier f (Darcy friction factor). The only requirement is that these references are
acyclic.

* Can refer to parameters, variables, inputs, outputs, member components and their
parameters, variables, inputs, and outputs, as well as Across variables of domains
used by the component nodes.

* Cannot refer to Through variables of domains used by the component nodes.

You can use intermediate terms in equations, as described in “Use in Equations” on page
2-49. However, you cannot access intermediate terms in the setup function.

Intermediate terms can appear in simulation data logs and Simscape Results Explorer, as
described in “Data Logging” on page 2-50. However, intermediate terms do not appear
in:

* Variable Viewer

» Statistics Viewer

Using Intermediate Terms in Equations

* Operating Point data
* Block dialog boxes and Property Inspector

Use in Equations

After declaring an intermediate term, you can refer to it by its identifier anywhere in the
equations section of the same component. For example:

component A
[...]

parameters

pl={1, 'm" };
end
variables

vi=4{0, 'm'"};

v2 ={ 0, 'm2' };
end
intermediates

int _expr = v172 * pi / pl;
end
equations

v2 == v1°2 + int_expr;
end
end

You can refer to a public intermediate term declared in a member component in the
equations of an enclosing composite component. For example:

component B
[...]
components
compl = MyPackage.A;
end
variables
vli=4{0, 'm2'};
end
[...]
equations
vl == compl.int expr;
end
end

Similarly, you can refer to an intermediate term declared in a domain in the equations
section of any component that has nodes of this domain type. For example:

2-49

2 Creating Custom Components and Domains

2-50

domain D
[...]
intermediates
int expr = vl / sqrt(2);
end

[...]
end

component C
[...]
nodes
n =D;
end
variables
vi={0, 'V'};
end
[...]
equations
vl == n.int _expr;
end
end

Accessibility of intermediate terms outside of the file where they are declared is governed
by their Access attribute value. For mode information, see “Attribute Lists” on page 2-
136.

Data Logging

Intermediate terms with ExternalAccess attribute values of modify or observe are
included in simulation data logs. For mode information, see “Attribute Lists” on page 2-
136.

If you specify a descriptive name for an intermediate term, this name appears in the
status panel of the Simscape Results Explorer.

For example, you declare the intermediate term D _h (hydraulic diameter) as a function of
the orifice area:

component E
[...]

intermediates
Dh =sqrt(4.0 * A/ pi); % Hydraulic diameter
end
[...]
end

Using Intermediate Terms in Equations

When you use a block based on this component in a model and log simulation data,
selecting D_h in the Simscape Results Explorer tree on the left displays a plot of the
values of the hydraulic diameter over time in the right pane and the name Hydraulic
diameter in the status panel at the bottom. For more information, see “About the
Simscape Results Explorer”.

Using the let Expressions

let expressions provide another way to define intermediate terms for use in one or more
equations. Use this method if you need to define intermediate terms of limited scope, for
use in a single group of equations. This way, the declarations and equations are close
together, which improves file readability.

The following example shows the same Darcy-Weisbach equation as in the beginning of
this topic but with intermediate terms written out using the let expression:

component MyComponent
[...]

parameters
L = {1, 'm' }; % Length
rho = { 1e3, 'kg/m"3' }; % Density
nu = { le-6, 'm™2/s' }; % Kinematic viscosity
end
variables
p ={ 0, 'Pa' }; % Pressure
q ={ 0, 'm3/s' }; % Volumetric flow rate
A ={ 0, 'm2' }; % Area
end
equations
let
f = 0.316 / Re _d"0.25; % Darcy friction factor
Red=Dh*V/ nu; % Reynolds number
Dh =sqrt(4.0 * A/ pi); % Hydraulic diameter
v =q / A; % Flow velocity
in
==f * L * rho * V2 / (2 * D_h); % final equation
end
end

end

After substitution of all intermediate terms, the final equation becomes:

p==0.316/(sqrt(4.0 * A / pi) * q / A/ nu)"0.25 * L * rho * (q / A)"2 / (2 * sqrt(4.0 * A / pi));

2-51

2 Creating Custom Components and Domains

2-52

However, in this case the four intermediate terms do not appear in logged simulation
data.

Syntax Rules of let Expressions

A let expression consists of two clauses, the declaration clause and the expression
clause.

equations
[...1]
let
declaration clause
in
expression clause
end
[...1]
end

The declaration clause assigns an identifier, or set of identifiers, on the left-hand side of
the equal sign (=) to an equation expression on the right-hand side of the equal sign:

LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with the keyword in,
and may contain one or more equation expressions. All the expressions assigned to the
identifiers in the declaration clause are substituted into the equations in the expression
clause during parsing.

Note The end keyword is required at the end of a Let-in-end statement.

Here is a simple example:

component MyComponent
[...]
variables
X = 0;
y =0;
end
equations
let
z =y + 1;
in

Using Intermediate Terms in Equations

X == Z;
end
end
end

In this example, the declaration clause of the let expression sets the value of the
identifier z to be the expression y + 1. Thus, substituting y + 1 for z in the expression
clause in the let statement, the code above is equivalent to:

component MyComponent
[...1]

variables

X = 0;
y =0;
end
equations
X =Yy + 1;
end
end
end

There may be multiple declarations in the declaration clause. These declarations are
order independent. The identifiers declared in one declaration may be referred to by the
expressions for identifiers in other declarations in the same declaration clause. Thus, in
the example with the Darcy-Weisbach equation, the identifier Re d (Reynolds number) is
used in the expression declaring the identifier f (Darcy friction factor). The only
requirement is that the expression references are acyclic.

The expression clause of a let expression defines the scope of the substitution for the
declaration clause. Other equations, that do not require these substitutions, may appear
in the equation section outside of the expression clause. In the following example, the
equation section contains the equation expression ¢ == b + 2 outside the scope of the
let expression before it.

component MyComponent
[...]
variables
a
b
C
end
equations
let
X =a+ 1;

I nn
(<)

2-53

2 Creating Custom Components and Domains

in
b == x;
end
c==Db + 2;
end

end

These expressions are treated as peers. They are order independent, so this example is
equivalent to

component MyComponent
-
variables
a
b
C
end
equations
c==Db+ 2;
let
X =a + 1;
in
b == x;
end
end
end

I nn
(o]

and, after the substitution, to

component MyComponent
[...]

variables
a =0;
b =0;
c =0;
end
equations
b ==a+1;
c==b+ 2;
end
end

Nested let Expressions

You can nest let expressions, for example:

2-54

Using Intermediate Terms in Equations

component MyComponent
[...]
variables
a
b
C
end
equations
let
w=a+ 1;
in
let
z
in
b == z;
C == w;
end
end
end
end

nnn
(<)

I
£
+

=

In case of nesting, substitutions are performed based on both of the declaration clauses.
After the substitutions, the code above becomes:

component MyComponent
[...]

variables
a=0;
b =0;
c =0;

end

equations
b==a+1+1;
c==a+1;

end

end

The innermost declarations take precedence. The following example illustrates a nested
let expression where the inner declaration clause overrides the value declared in the
outer one:

component MyComponent
[...]

variables
a=0;

2-55

2 Creating Custom Components and Domains

b =0;
end
equations
let
w=a+ 1;
in
let
w=a+ 2;
in
b == w;
end
end
end
end

Performing substitution on this example yields:

component MyComponent

[...]

variables
a=20;
b =0;
end
equations
b ==a+ 2;
end
end

Conditional let Expressions

You can use if statements within both declarative and expression clause of let
expressions, for example:

component MyComponent
[...]
variables
a
b
C
end
equations
let
x = if a < 0, a else b end;
in
C == X;

Innn
(<)

2-56

Using Intermediate Terms in Equations

end
end
end

Here x is declared as the conditional expression based on a < 0. Performing substitution
on this example yields:

component MyComponent

[...]

variables
a=0;
b =0;
c =0;
end
equations
c == 1if a < 0, a else b end;
end
end

The next example illustrates how you can use let expressions within conditional
expressions. The two let expressions on either side of the conditional expression are
independent:

component MyComponent
[...]
variables
a 0;
b 0;
C 0;
end
equations
ifa<o
let
z=b+ 1;
in
C == z;
end
else
let

in

end
end

2-57

2 Creating Custom Components and Domains

end
end

This code is equivalent to:

component MyComponent
[...]

variables
a=0;
b =0;
c =0;
end
equations
if a<0
= b + 1;
else
= b + 2;
end
end
end

Identifier List in the Declarative Clause

This example shows using an identifier list, rather than a single identifier, in the
declarative clause of a let expression:

component MyComponent
[...]
variables
a
b
C
d
end
equations
let
[x, y] = if a < 0, a; -a else -b; b end;
in
C == X;
d ==y;
end
end
end

[cNoNoNo]

’
’

2-58

See Also

Here x and y are declared as the conditional expression based on @ < 0. Notice that
each side of the if statement defines a list of two expressions. A first semantic
translation of this example separates the if statement into

if a < 0, a; -a else -b; b end =>
{ if a < 0, a else -b end; if a < 0, -a else b end }

then the second semantic translation becomes

[x, y] = { if a < 0, a else -b end; if a < 0, -a else b end } =>
x = if a < 0, a else -bend; y = if a < 0, -a else b end;

and the final substitution on this example yields:

component MyComponent
[...]
variables
a
b
C
d
end
equations
c == 1if a < 0, a else -b end;
d == if a < 0, -a else b end;
end
end

’

’

[cNoNoNo]

’
’

See Also

intermediates

More About

. “Defining Component Equations” on page 2-31

. “Using Conditional Expressions in Equations” on page 2-43

. “Using Lookup Tables in Equations” on page 2-60

. “Programming Run-Time Errors and Warnings” on page 2-63

2-59

2 Creating Custom Components and Domains

Using Lookup Tables in Equations

2-60

You can use the tablelookup function in the equations section of the Simscape file to
interpolate input values based on a set of data points in a one-dimensional, two-
dimensional, or three-dimensional table. This functionality is similar to that of the
Simulink and Simscape Lookup Table blocks. It allows you to incorporate table-driven
modeling directly in your custom block, without the need of connecting an external
Lookup Table block to your model.

The following example implements mapping temperature to pressure using a one-
dimensional lookup table.

component TtoP

inputs

u= {0, 'K'}; % temperature
end
outputs

y = {0, 'Pa'}; % pressure
end

parameters (Size=variable)
xd = {[160 200 300 400] 'K'};
yd = {[1le5 2e5 3e5 4e5] 'Pa'};

end
equations
y == tablelookup(xd, yd, u, interpolation=linear, extrapolation=nearest);
end
end

xd and yd are declared as variable-size parameters with units. This enables the block
users to provide their own data sets when the component is converted to a custom block,
and also to select commensurate units from the drop-downs in the custom block dialog
box. The next illustration shows the dialog box of the custom block generated from this
component.

"4 Block Parameters: TtoP @
TtoP
Source code
Parameters
xd: [100, 200, 300, 400] K -
yd: [1e5, 2e5, 3e5, 4e5] Pa -
[0K] | Cancel | | Help Apply

Using Lookup Tables in Equations

Note Currently, you cannot use variable-size parameters in the equations section
outside of the tablelookup function.

To avoid repeating the same variable-size parameter declarations in each component that
needs to use them in its tablelookup function, you can declare variable-size domain
parameters and propagate them to components for interpolation purposes. For more
information, see “Propagation of Domain Parameters” on page 2-129.

The following rules apply to the one-dimensional arrays xd and yd:

* The two arrays must be of the same size.

» For smooth interpolation, each array must contain at least three values. For linear
interpolation, two values are sufficient.

* The xd values must be strictly monotonic, either increasing or decreasing.

The TtoP component uses linear interpolation for values within the table range, but
outputs the nearest value of yd for out-of-range input values. The following illustration
shows a block diagram, where the custom TtoP block is used with a linear input signal
changing from 0 to 1000, and the resulting output.

Simecape
_/ [[temperature prassurg p————{—— C]
TtoP
Ramp Simulink-P3 P5-Simulink Scope
Convertar ToP Converter

flx)=0 p——r

Salver
Configuration

2-61

2 Creating Custom Components and Domains

See the tablelookup reference page for syntax specifics and more examples.

See Also

More About

. “Defining Component Equations” on page 2-31

. “Using Conditional Expressions in Equations” on page 2-43

. “Using Intermediate Terms in Equations” on page 2-46

. “Programming Run-Time Errors and Warnings” on page 2-63

2-62

Programming Run-Time Errors and Warnings

Programming Run-Time Errors and Warnings

Use the assert construct to implement run-time error and warning messages for a
custom block. In the component file, you specify the condition to be evaluated, as well as
the error message to be output if this condition is violated. When the custom block based
on this component file is used in a model, it will output this message if the condition is
violated during simulation. The optional Action attribute of the assert construct
specifies whether simulation stops when the predicate condition is violated, continues
with a warning, or ignores the violation.

The following component file implements a variable resistor, where input physical signal
R supplies the resistance value. The assert construct checks that this input signal is
greater than or equal to zero:

component MyVariableResistor

Variable Resistor

Models a linear variable resistor. The relationship between voltage V
and current I is V=I*R where R is the numerical value presented at the
physical signal port R. If this signal becomes negative, simulation
errors out.

d° 0% 0% P o° o°

inputs
R={0.0, 'Ohm' };
end
nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
end
variables
i=4{0, 'A" };
v={0 "'V}
end
branches
i:p.1->n.i;
end
equations
assert(R >= 0, 'Negative resistance is not modeled');
V == p.VvV - N.V;

2-63

2 Creating Custom Components and Domains

2-64

v == 1*R;

end

end

If a model contains this Variable Resistor block, and signal R becomes negative during
simulation, then simulation stops and the Simulation Diagnostics window opens with a
message similar to the following:

At time 3.200000, an assertion is triggered. Negative resistance is not modeled.
The assertion comes from:

Block path: dc motorl/Variable Resistor

Assert location: between line: 29, column: 14 and line: 29, column: 18 in file:
C:/Work/libraries/+MySimscapelLibrary/+ElectricalElements/MyVariableResistor.ssc

The error message contains the following information:

Simulation time when the assertion got triggered
The message string (in this example, Negative resistance is not modeled)

An active link to the block that triggered the assertion. Click the Block path link to
highlight the block in the model diagram.

An active link to the assert location in the component source file. Click the Assert
location link to open the Simscape source file of the component, with the cursor at
the start of violated predicate condition. For Simscape protected files, the Assert
location information is omitted from the error message.

See the assert reference page for syntax specifics and more examples.

See Also

More About

“Defining Component Equations” on page 2-31

“Using Conditional Expressions in Equations” on page 2-43
“Using Intermediate Terms in Equations” on page 2-46
“Using Lookup Tables in Equations” on page 2-60

Import Symbolic Math Toolbox Equations

Import Symbolic Math Toolbox Equations

When designing a Simscape language component, you can use Symbolic Math Toolbox
software to solve the physical equations and generate code in the format appropriate for
the Simscape language equation section. Then, import the results by copying and pasting
them into the equation section of a component file and declaring all the symbolic
variables used in these equations.

Solve Generate Import

Suppose, you want to generate a Simscape equation from the solution of the following
ordinary differential equation. As a first step, use the dsolve function to solve the
equation:

syms a y(t)

Dy = diff(y);

S dsolve(diff(y, 2) == -a™2*y, y(0) == 1, Dy(pi/a) == 0);
S simplify(s)

The solution is:

S =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape
language equation format:

simscapeEquation(s)
simscapeEquation generates the following code:

ans =
s == cos(a*time);

Copy and paste the generated code into the equation section of a component file:

2-65

2 Creating Custom Components and Domains

2-66

component MyComponent

equations
s == cos(a*time);
end
end

Make sure the declaration section of the component file contains all the symbolic
variables used in these equations. You can declare these symbolic variables as Simscape
language variables, parameters, inputs, or outputs, depending on their physical function
and your intended block design.

component MyComponent

inputs
a ={1,'m/s'};
end
outputs
s = {0,'m'};
end
equations
s == cos(a*time);
end
end
See Also

Related Examples

. “Use Simulation Time in Equations” on page 2-39

More About

. “Getting Started with Symbolic Math Toolbox” (Symbolic Math Toolbox)

. “Generate Simscape Equations from Symbolic Expressions” (Symbolic Math Toolbox)

Discrete Event Modeling

Discrete Event Modeling

In this section...

“Event Variables” on page 2-67
“Event Data Type and edge Operator” on page 2-68

“Events Section and when Clause” on page 2-69

Physical modeling, in general, involves continuous variables and equations. In some
cases, however, you can simplify the mathematical model of the system and improve
simulation performance by treating certain changes in system behavior as discrete. Such
an idealization assumes that system variables may only change values instantaneously
and discontinuously at specific points in time.

An event is a conceptual notation that denotes a change of state in a system. Event
modeling lets you perform discrete changes on continuous variables. The two most
common applications of event modeling are:

» Trigger-and-hold mechanism, such as a triggered delay. For example, a component has
two inputs: u and x (triggered signal), and one output y. When and only when the
triggered signal x changes value from false to true, output y is reset to the value of u
at current time. y remains unchanged all other times.

* Enabled component, acting on a principle similar to Simulink enabled subsystem
(Simulink). That is, the component has a control signal as input. If the control signal
has a positive value, then the component holds certain states to the most recent value,
or resets them. When the control signal is negative, the states change according to
component equations.

The following constructs in Simscape language let you perform event modeling: event
variables, events section, when clause, and edge operator.

Event Variables

Event variables are piecewise constant, that is, they change values only at event instants,
and keep their values constant between events. You can declare internal component
variables of type integer or real as event variables by setting the Event=true attribute.
For example, the following code declares two event variables: x (type real) and d (type
integer).

2-67

2 Creating Custom Components and Domains

variables (Event=true)
X 0;
d int32(0);

end

You can initialize event variables by using the initialevent operator. You can also
initialize event variables the same way as continuous variables, by setting their target
values and priorities in the member declaration block. For more information, see
initialevent.

You update the values of the event variables in the events section of the component file,
by using the when clause.

Event Data Type and edge Operator

The edge operator takes a scalar Boolean expression as input. It returns true, and
triggers an event, when and only when the input argument changes value from false to
true. The return type of edge is event type. Event data type is a special category of
Boolean type, which returns true only instantaneously, and returns false otherwise.

The following graphic illustrates the difference between Boolean and event data types.

1r-

0 1 2 tirme

m— cye(h)

0 1 2 tirme

edge (b) returns true only when b changes from false to true.
To trigger an event on the falling edge of condition b, use edge (~b).

The data derivation rules between Boolean and event data types are:

2-68

Discrete Event Modeling

* edge(boolean)is event

+ ~event is boolean

* (event && event)is event

* (event && boolean) is event
* (event || event)is event

* (event || boolean)is boolean

You use the edge operator to define event predicates in when clauses.

Events Section and when Clause

The events section in a component file manages the event updates. The events section
can contain only when clauses. The order of when clauses does not matter.

The when clause serves to update the values of the event variables. The syntax is

when EventPredicate

varl = exprl;
var2 = expr2;
end

EventPredicate is an expression that defines when an event occurs. It must be an
expression of event data type, as described in “Event Data Type and edge Operator” on
page 2-68.

The variables in the body of the when clause must be declared as event variables. When
the event predicate returns true, all the variables in the body of the when clause
simultaneously get updated to the new values.

The order of the variable assignments in the body of the when clause does not matter,
because all updates happen simultaneously. For example, if d1 and d2 are event variables
initialized to 0,

when edge(time>1.0)

dl = d2 + 1;
d2 =dl + 1;
end

is equivalent to:

2-69

2 Creating Custom Components and Domains

2-70

when edge(time>1.0)
d2 dl + 1;
dl d2 + 1;
end

After the event, both d1 and d2 have a new value of 1, because they were both
simultaneously updated by adding 1 to the old value of 0.

A when clause cannot update an event variable more than once within the same
assignments list. However, two independent when clauses also may not update the same
event variable. You must use an elsewhen branch to do this.

Branching of the elsewhen Clauses
A when clause can optionally have one or more elsewhen branches:
when EventPredicate

varl exprl;
var2 expr2;

elsewhen EventPredicate
varl = expr3;

end

Note The default else branch in a when clause is illegal.

A common usage of elsewhen branches is to prioritize events. If multiple predicates
become true at the same point in time, only the branch with the highest precedence is
activated. The precedence of the branches in a when clause is determined by their
declaration order. That is, the when branch has the highest priority, the last elsewhen
branch has the lowest priority.

See Also

Related Examples
. “Triggered Delay Component” on page 2-71
. “Enabled Component” on page 2-72

Triggered Delay Component

Triggered Delay Component

The following example implements a triggered delay component:

component Triggered
inputs
u=0; % input signal
triggered = 0; % control signal
end
variables(Event=true)
X = 0;
end
outputs
y = 0;
end
events
when edge(triggered>0)
X = Uu;
end
end
equations
y = X;
end
end

When the control signal becomes positive, the event variable x gets updated to the
current value of the input signal u. Output y outputs the value of x. Therefore, the output
signal y gets updated to the current value of the input signal u on the rising edge of the
control signal, and then holds that value between the events.

See Also

Related Examples
. “Enabled Component” on page 2-72

More About
. “Discrete Event Modeling” on page 2-67

2-71

2 Creating Custom Components and Domains

Enabled Component

2-72

The following example implements a component similar to a Simulink enabled subsystem
(Simulink):

component EnabledComponent

inputs
enabled = 0; % control signal
u=0; % input signal
end
variables (Event=true)
X = 0; % state to hold output if necessary
end
outputs
y = 0; % output
end
parameters
held = true; % set true for held or false for reset
y init = 0;
end
events
when edge(held && ~(enabled>0))
X = u; % if necessary, hold input on falling edge
end
end
equations
if enabled > 0
y == u;
elseif held==true
y == X;
else % not enabled and not held
y ==y init;
end
end

end
The component has two inputs: control signal enabled and data signal u.

The block operation depends on the value of the held parameter: if it is true, then the
event variable x assumes the value of the input data signal u on the falling edge of the
control signal.

As long as the control signal has a positive value, the output y matches the input data
signal u. When the control signal is negative:

See Also

* Ifheldis true, the output port y outputs the most recent held value of the event
variable.

+ Ifheldis false, the output resets to the initial value, specified by they init
parameter.

See Also

Related Examples
. “Triggered Delay Component” on page 2-71

More About
. “Discrete Event Modeling” on page 2-67

2-73

2 Creating Custom Components and Domains

About Composite Components

2-74

A composite component is constructed out of other components. To create a composite
component, you have to list the names of the member (constituent) components and then
specify how the ports of the member components are connected to each other and to the
external ports of the composite component. You also specify which parameters of the
member components are to be visible, and therefore adjustable, in the block dialog box of
the composite component.

In certain ways, this functionality is similar to creating a subsystem in a Simulink block
diagram, however there are important differences. Simscape language is a textual
environment, and therefore you cannot “look under mask” and see a graphical
representation of the underlying component connections. At the same time, the textual
environment is a very powerful tool for modeling complex modular systems that consist of
multiple interconnected member components.

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About

. “Declaring Member Components” on page 2-75

. “Parameterizing Composite Components” on page 2-77

. “Specifying Initial Target Values for Member Variables” on page 2-80
. “Specifying Component Connections” on page 2-82

. “Importing Domain and Component Classes” on page 2-143

Declaring Member Components

Declaring Member Components

A components declaration block begins with a components keyword and is terminated
by an end keyword. This block contains declarations for member components included in
the composite component. A components declaration block must have its
ExternalAccess attribute value set to observe (for more information on member
attributes, see “Attribute Lists” on page 2-136).

When declaring a member component, you have to associate it with an existing
component file, either in the Simscape Foundation libraries or in your custom package.
You need to refer to the component name using the full path starting with the top package
directory. For more information on packaging your Simscape files, see “Building Custom
Block Libraries” on page 4-30.

The following example includes a Rotational Spring block from the Simscape Foundation
library in your custom component:

components (ExternalAccess=observe)
rot_spring = foundation.mechanical.rotational.spring;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the component
file spring.ssc.

If you want to use your own customized rotational spring called spring.ssc and located
at the top level of your custom package directory +MechanicalElements, the syntax
would be:

components (ExternalAccess=observe)
rot_spring = MechanicalElements.spring;
end

Once you declare a member component, use its identifier (in the preceding examples,
rot spring) to refer to its parameters, variables, nodes, inputs, and outputs. For
example, rot spring.spr_rate refers to the Spring rate parameter of the Rotational
Spring block.

2-75

2 Creating Custom Components and Domains

2-76

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About

. “Parameterizing Composite Components” on page 2-77

. “Specifying Initial Target Values for Member Variables” on page 2-80
. “Specifying Component Connections” on page 2-82

. “Importing Domain and Component Classes” on page 2-143

Parameterizing Composite Components

Parameterizing Composite Components

Composite component parameters let you adjust the desired parameters of the underlying
member components from the top-level block dialog box when building and simulating a
model.

Specify the composite component parameters by declaring a corresponding parameter in
the top-level parameters declaration block, and then assigning it to the desired
parameter of a member component. The declaration syntax is the same as described in
“Declare Component Parameters” on page 2-16.

For example, the following code includes a Foundation library Resistor block in your
custom component file, with the ability to control the resistance at the top level and a
default resistance of 10 Ohm:

component MyCompositeModel
[...]
parameters
pl = {106, 'Ohm'};
[...]
end
components (ExternalAccess=observe)
rl = foundation.electrical.elements.resistor(R = pl);

[...]
end

[...]
end

You do not have to assign all the parameters of member blocks to top-level parameters. If
a member block parameter does not have a corresponding top-level parameter, the
composite model uses the default value of this parameter, specified in the member
component.

Caution on Using setup to Parameterize Composite
Components

You can establish the connection of a top-level parameter with a member component
parameter either in the components declaration block, or later, in the setup section.
Starting in R2019a, using setup is not recommended. If you have legacy code using the
setup function, update it to use parameter assignment in the components block instead.
For example, this code is equivalent to the example above:

2-77

2 Creating Custom Components and Domains

component MyCompositeModel
[...]
parameters
pl = {10, 'Ohm'};
[...]
end
components (ExternalAccess=observe)
rl = foundation.electrical.elements.resistor;

end
[...]
function setup
rl.R = pl;
end
[...]
end

Note In case of conflict, assignments in the setup section override those made in the

declaration section.

Components are instantiated using default parameter values in the declaration section
before setup is run. Therefore, if you make adjustments to the parameters in the setup
section, use a subsequent setup section assignment to establish proper connection
between the top-level parameter with a member component parameter, as shown in the

following example:

component RC

nodes
p = foundation.electrical.electrical; % :right
n = foundation.electrical.electrical; % :left
end
parameters

R={1, 'Ohm'}; %
tc={1, 's'}; %
end
parameters (ExternalAccess=observe)
C={1, '"F'};
end
components (ExternalAccess=observe)
cl = foundation.electrical.elements.capacitor(
rl = foundation.electrical.elements.resistor (R
end

esistance
C time constant

X 0

c=C);
=R)

’

R

2-78

See Also

function setup
C = tc/R;
cl.c = C; % This assignment ensures correct operation
end
connections
connect(cl.p, p);
connect(cl.n, rl.p);
connect(rl.n, n);
end
end

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About

. “Declaring Member Components” on page 2-75

. “Specifying Initial Target Values for Member Variables” on page 2-80
. “Specifying Component Connections” on page 2-82

2-79

2 Creating Custom Components and Domains

Specifying Initial Target Values for Member Variables

Member components have to be declared as hidden, and therefore their variables do not
appear in the Variables tab of the top-level block dialog box. However, if a certain
member component variable is important for initialization, you can tie its value to an
initialization parameter in the top-level parameters declaration block. In this case, the
block user will be able to adjust the initial target value of the member component variable
from the top-level block dialog box when building and simulating a model.

Note The block user cannot change the initialization priority of the member component
variable. You specify the variable initialization priority when you declare the member
component. The syntax is the same as described in “Variable Priority for Model
Initialization” on page 2-11.

For example, you have a composite DC Motor block (similar to the one described in
“Composite Component — DC Motor” on page 2-125) and want the block user to specify
the initial target value for the inductor current, with low priority. The following code
includes a Foundation library Inductor block in your custom component file, with the
ability to control its inductance at the top level (by using the Rotor Inductance block
parameter) and also to specify a low-priority initial target for the inductor current
variable:

component DCMotor2
[...]
parameters
rotor _inductance = { 12e-6, 'H' }; % Rotor Inductance
i0 = { 06, 'A" }; % Initial current target for Rotor Inductor
[...]
end
components (ExternalAccess=observe)
rotorInductor = foundation.electrical.elements.inductor(l = rotor inductance,
i L = {value = 10, priority = priority.low});
[...]
end
[...]
end

In this case, the block user can specify a value for the Initial current target for Rotor
Inductor parameter, which appears in the block dialog box of the composite component.
This value gets assigned as the initial target to variable i L (Initial current variable of
the member Inductor block), with low initialization priority. Depending on the results of
the solve, the target may or may not be satisfied when the solver computes the initial
conditions for simulation. For more information, see “Block-Level Variable Initialization”.

2-80

See Also

You can use an alternative syntax that lets you assign the variable value and priority data
fields separately, using the dot notation. For example, the following statement:

rotorInductor = foundation.electrical.elements.inductor(l = rotor inductance,
i L.value = i0, i L.priority = priority.low);

is equivalent to the Inductor component declaration from the previous example.

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About

. “Declaring Member Components” on page 2-75

. “Parameterizing Composite Components” on page 2-77
. “Specifying Component Connections” on page 2-82

2-81

2 Creating Custom Components and Domains

Specifying Component Connections

2-82

In this section...

“About the Structure Section” on page 2-82
“Conserving Connections” on page 2-83

“Connections to Implicit Reference Node” on page 2-84
“Physical Signal Connections” on page 2-85
“Nonscalar Physical Signal Connections” on page 2-87

About the Structure Section

The structure section of a Simscape file is executed once during compilation. This section
contains information on how the constituent components’ ports are connected to one
another, as well as to the external inputs, outputs, and nodes of the top-level component.

The structure section begins with a connections keyword and is terminated by an end
keyword. This connections block contains a set of connect constructs, which describe
both the conserving connections (between nodes) and the physical signal connections
(between the inputs and outputs).

In the following example, the custom component file includes the Foundation library
Voltage Sensor and Electrical Reference blocks and specifies the following connections:

* Positive port of the voltage sensor to the external electrical conserving port + of the
composite component
* Negative port of the voltage sensor to ground

* Physical signal output port of the voltage sensor to the external output of the
composite component, located on the right side of the resulting block icon

Specifying Component Connections

| Elecrical _ 1
' Refgence — |
I I
1 1
: \ioltage Sensor : Simscape
1
e > 4+ 1 VP
P "'@Ip : VoltSG
1 1
L ' Volt5G
component VoltSG
nodes
p = foundation.electrical.electrical; % +
end
outputs
Out = { 0.0, 'V' }; % V:right
end

components (ExternalAccess=observe)
VoltSensor = foundation.electrical.sensors.voltage;
Grnd = foundation.electrical.elements.reference;

end

connections
connect(p, VoltSensor.p);
connect(Grnd.V, VoltSensor.n);
connect(VoltSensor.V, Out);

end

end

In this example, the first two connect constructs specify conserving connections
between electrical nodes. The third connect construct is a physical signal connection.
Although these constructs look similar, their syntax rules are different.

Conserving Connections

For conserving connections, the connect construct can have two or more arguments. For
example, the connections in the following example

connections
connect(Rl.p, R2.n);
connect(Rl.p, R3.p);
end

2-83

2 Creating Custom Components and Domains

2-84

can be replaced with
connections

connect(Rl.p, R2.n, R3.p);
end

The order of arguments does not matter. The only requirement is that the nodes being
connected are all of the same type (that is, are all associated with the same domain).

In the following example, the composite component consists of three identical resistors
connected in parallel:

component ParResistors

nodes
p = foundation.electrical.electrical;
n = foundation.electrical.electrical;
end
parameters
pl = {3 , 'Ohm'};
end

components (ExternalAccess=observe)

rl = foundation.electrical.elements.resistor(R=pl);
r2 = foundation.electrical.elements.resistor(R=pl);
r3 = foundation.electrical.elements.resistor(R=pl);
end
connections

connect(rl.p, r2.p, r3.p, p);
connect(rl.n, r2.n, r3.n, n);
end
end

Connections to Implicit Reference Node

The * symbol indicates connections to a reference node in branch statements. You can
also use it to indicate connections to an implicit reference node within the structure
section of a component:

connections
connect (A, *);
end

The implicit reference node acts as a virtual grounding component. A node connected to
an implicit reference has all its Across variables equal to 0.

Specifying Component Connections

The * symbol is not domain-specific, and the same structure section can contain
connections to implicit reference in different domains:

component abc

nodes

M = foundation.hydraulic.hydraulic;

N = foundation.electrical.electrical;
end
connections

connect (M, *);
connect(N, *);
end
end

However, multiple ports connected to an implicit reference within the same connect
statement must all belong to the same domain:

connections
connect(a, b, *);
end
The order of ports does not matter. This behavior is consistent with general connection
rules for multiple conserving ports.

Physical Signal Connections

Physical signal connections are directional, therefore the connect construct has the
following format:

connect(s, d);
where s is the signal source port and d is the destination port.

There can be more than one destination port connected to the same source port:

connect(s, dl, d2);

The source and destination ports belong to the inputs or outputs member classes. The
following table lists valid source and destination combinations.

Source Destination

External input port of composite component |Input port of member component

2-85

2 Creating Custom Components and Domains

2-86

Source

Destination

Output port of member component

Input port of member component

Output port of member component

External output port of composite
component

For example, consider the following block diagram.

.
|

PS5 Sublract P55 Gain

Valve Subsystem

Hydr aulic: Reference

Hydraulic:
Flow R ate Sensor

CompMeas

It represents a composite component CompMeas, which, in turn, contains a composite
component Valve Subsystem, as well as several Foundation library blocks. The
Simscape file of the composite component would specify the equivalent signal

connections with the following constructs.

Construct

Explanation

connect(In, subt.Il);

Connects port In to the input port + of the
PS Subtract block. Illustrates connecting an
input port of the composite component to
an input port of a member component.

connect(subt.0, gain.I);

Connects the output port of the PS Subtract
block to the input port of the PS Gain block.
[lustrates connecting an output port of a
member component to an input port of
another member component at the same
level.

Specifying Component Connections

Construct Explanation

connect(fl rate.Q, subt.I2, Out); |Connects the output port Q of the Hydraulic
Flow Rate Sensor block to the input port -
of the PS Subtract block and to the output
port Out of the composite component.
Illustrates connecting a single source to
multiple destinations, and also connecting
an output port of a member component to
an output port of the enclosing composite
component.

Also notice that the output port of the PS Gain block is connected to the input port of the
Valve Subsystem composite block (another member component at the same level). Valve
Subsystem is a standalone composite component, and therefore if you connect the output
port of the PS Gain block to an input port of one of the member components inside the
Valve Subsystem, that would violate the causality of the physical signal connections (a
destination port cannot be connected to multiple sources).

Nonscalar Physical Signal Connections

Multidimensional physical signals can be useful for:

* Aggregating measurements at different spatial points, such as temperatures along a
coil or a 2-D grid of elements

* Using 3-D body positions or velocities

* Using rotation matrices or quaternions in 3-D

* Using tensors

Simscape language supports nonscalar (vector-valued or matrix-valued) physical signals
in inputs and outputs declarations. All signals in such vector or matrix should have the
same units. For example, the following declaration

inputs
I = {zeros(3), 'm/s'}; % :left
end

initializes a component input as a 3-by-3 matrix of linear velocities.

2-87

2 Creating Custom Components and Domains

2-88

When you connect input and output ports carrying nonscalar physical signals, you can use
signal indexing and concatenation at the source, but not at the destination. Scalar
expansion is not allowed.

The following table shows valid syntax examples, assuming subcomponent A with output
signal port A. 0 is being connected to subcomponent B with input signal port B. i, and all
sizes and units are compatible.

Construct Explanation

connect(A.o(1,2), B.i); Source indexing, to connect to a scalar
destination: take entry (1,2) of the output
A.o0 and connect it to the input B.i.

connect(A.o0(1:2:5,2:3), B.i); Index by rows and columns to specify a
submatrix.
connect(A.o(1l:2:end,:), B.1i); Use colon notation to specify array

boundaries (pass every other column of the
output A.o to input B.i.

connect([Al.o0, A2.0], B.i); Concatenate outputs Al.o and A2.0 column-
wise and pass the result to the input B.i.

You can use block parameter values for indexing inside a connect statement, for
example:

connect(a.o(value(param name, '1'), 3), b.i);

When you connect two physical signals, their units must be directly convertible. If one of
the signals is declared as unitless (that is, with units of '1'), then you can connect a
signal with any base units to it. However, unit conversion is not supported in this case.
For example, if a. 1 is a 2x1 unitless input port, then this statement is valid:

connect([outl in meters, out2 in seconds], a.i);

If you connect signals with different scales of the same unit with a unitless input port, the
compiler alerts you to the fact that unit conversion is ignored. For example, the following
statement produces a warning at compile time:

connect([outl in km, out2 in mm], a.i);

See Also

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About
. “Declaring Member Components” on page 2-75
. “Parameterizing Composite Components” on page 2-77

. “Specifying Initial Target Values for Member Variables” on page 2-80

2-89

2 Creating Custom Components and Domains

Converting Subsystems into Composite Components

2-90

In this section...

“Suggested Workflows” on page 2-90
“Parameter Promotion” on page 2-91

“Limitations” on page 2-94

The subsystem2ssc function lets you convert a subsystem consisting entirely of
Simscape blocks into a textual Simscape file. The function generates a composite
component file based on the subsystem configuration. If the subsystem being converted
contains nested subsystems, then the function generates several Simscape files, one for
each subsystem.

Use this functionality to:

» Facilitate the authoring of composite components. When writing textual files, it can be
difficult to visualize the connections inside a composite component. This functionality
lets you create a model out of Simscape blocks, enclose it into a subsystem, and then
convert this subsystem into a textual composite component.

* Improve the usability of a complex subsystem, by reducing clutter and exposing only a
few relevant parameters at the top level.

» Share your models with customers without revealing the underlying intellectual
property.

Suggested Workflows

To create a reusable composite component:

1 Model a physical component (such as a motor, valve, amplifier, and so on) using
blocks from the Simscape Foundation library, add-on product libraries, or custom
blocks. Fine-tune the parameters and troubleshoot the model, as necessary.

2 Select the blocks and connection lines that represent your physical component, and
create a subsystem from selection. For more information, see “Create Subsystem
from Selection” (Simulink).

The subsystem does not need to be masked. However, to expose underlying block
parameters or variables at the top level, you have to mask the subsystem and

Converting Subsystems into Composite Components

promote these parameters or variables to the subsystem mask. For more information,
see “Parameter Promotion” on page 2-91.

3 Use the subsystem2ssc function to convert your subsystem into a textual composite
component. If the subsystem being converted contains nested subsystems, then the
function generates several Simscape files, one for each subsystem.

To enable model sharing without revealing the underlying intellectual property:

1 When converting the subsystem, use the subsystem2ssc function with a
targetFolder argument to place the file or files generated by the function into a
target folder.

For example,

subsystem2ssc('ssc dcmotor/DC Motor','./MotorsLibrary")
creates a file named DC_Motor.ssc and places it into the folder named
MotorsLibrary.

Create and place other motor models into the same target folder.

Protect the source files in the target folder by using the ssc_protect function.

Share the contents of the folder with other users or customers without revealing the
underlying source.

You can place generated files into a package folder and build a library by using the
ssC_build or ssc_mirror functions. However, if your subsystem contains nested
subsystems, you have to edit the subcomponent paths in the generated files manually to
match your intended package structure. Alternatively, you can use the Simscape
Component blocks, which work with the flat hierarchy of the target folder without
modification.

Parameter Promotion

You can mark member block and subsystem parameters for promotion to the top level
using the subsystem mask. The subsystem2ssc function automatically generates the
corresponding Simscape code, similar to composite components. For more information,
see “Parameterizing Composite Components” on page 2-77.

When you deploy the generated composite file as a custom block, the block dialog box
contains these promoted parameters only.

2-91

2 Creating Custom Components and Domains

2-92

This example shows how you can make the motor inertia modifiable at the DC Motor
subsystem level, and the effect on generated Simscape code and the resulting custom
block mask:

Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window.

Load Torgue
g

+ v
vmta[;g g ;/mj EEW Step Input
I - _ e Motor

RPM

f(x)=0

Right-click the DC Motor subsystem and, from the context menu, select Mask > Edit

Mask.

Click the Parameters & Dialog tab. Use the Promote control option to promote the
Inertia parameter of the Inertia block to the subsystem mask. For more information,

see “Promote Underlying Parameters to Subsystem Mask” (Simulink).

ﬂ Promoted Parameter Selector : '‘MaskParam1' of block DC Motor — O e
Description
Choose underlying block parameter(s) to promote to the selected mask parameter. For a subsystem block, you can associate multiple promoted
parameters with the mask parameter, provided they are of the same type. Setting the value of the mask parameter also sets the value of the
promoted parameter(s).
Child blocks Promotable parameters Promoted parameters (Type: edit)
bc Motor Prompt MName Relative block path MName
g anc:Dn Inertia inertia Inertia |inertia
ne |.a X inertia_unit inertia_unit
& RotationalElectromechanica — —
inertia_conf inertia_conf
4 Rotorinductance -
X w w_specify
& RotorResistance -
W w_priority
0V+
or w w
s w_unit w_unit
> W w_nominal_specify
Search for: Field(s): | All fields A
oK Cancel Help

matlab:ssc_dcmotor

Converting Subsystems into Composite Components

ﬂ Maszk Editor : DC Motor

Controls ~

[=l Parameter

Edit

@ Check box
Popup
Combo box
@ Radic button
Ui Slider

40F Dial

[E Spinbox
Z unit

[DataTypeStr
Min

Max

@ Promote

= Container

=1 Group box
[3 Tab
F Table

[= Display

A Text

|2l Imace g
Unmask Preview

lcon & Ports Parameters & Dialog |nitialization Documentation

Dialog box
Type Prompt MName
14 %< MaskType> DescGroupVar
E %< MaskDescription= DescTextVar
Parameters ParameterGroupVar

Drag or Click items in |eft palette to add to dialog.
Use Delete key to remove items from dialeg.
Tutoriak- Creating a Mask: Parameters and Dialog Pane

Constraint Manager

Property editor

B Properties
Mame
Value
Prompt
Type

Type options promote(inerti...

B Attributes
Evaluate
Tunable
Read only
Hidden
MNever save
Constraint

= Dialog
Enable
Visible
Callback
Tooltip

B Layout
Item location

Prompt location

Haorizontal Stret...

Cancel

inertia
0.01
Inertia

edit

off w

oono

MNeone w

K&

MNew row
Left ~

Help Apply

Alternatively, you can use the Edit control option to add a parameter to the
subsystem mask and associate it with the Inertia parameter of the underlying Inertia

block.

Convert the DC Motor subsystem into a Simscape component file and place this file in
your current working folder:

subsystem2ssc('ssc _dcmotor/DC Motor"')

The function creates a file named DC_Motor.ssc in the current folder. Open the file

in the editor.

component DC_Motor
parameters
inertia = {.01,
end
nodes
C = foundation.

‘cm~2*g'}; %Inertia

mechanical.rotational.rotational;

2-93

2 Creating Custom Components and Domains

2-94

R = foundation.mechanical.rotational.rotational;
V1 foundation.electrical.electrical;
Vo foundation.electrical.electrical;
end
components (ExternalAccess = observe)
Rotor Resistance = foundation.electrical.elements.resistor(R

{3.9, '0Ohm'});

Rotor Inductance = foundation.electrical.elements.inductor(l = {1.2e-05, 'H'}, r = {0, 'Ohm'}, g = {le-09,

'1/0hi

Rotational Electromechanical Converter = foundation.electrical.elements.rotational converter(K = {.0006875493541

Inertia = foundation.mechanical.rotational.inertia(inertia = inertia);
Friction = foundation.mechanical.rotational.friction(brkwy trq = {2e-05, 'm*N'}, brkwy vel = {.03347,

end

connections
connect(V0,Rotor Resistance.p);
connect(Rotational Electromechanical Converter.p,Rotor Inductance.n);
connect(V1,Rotational Electromechanical Converter.n);
connect(Rotor_Inductance.p,Rotor Resistance.n);
connect(R,Friction.R);
connect(R,Inertia.I);
connect(R,Rotational Electromechanical Converter.R);
connect(C,Friction.C);
connect(C,Rotational Electromechanical Converter.(C);

end

end

Notice the top-level parameters block containing the inertia parameter.

5 If you now point a Simscape Component block to the DC_Motor. ssc source file, the
block dialog box contains a parameter named Inertia.

Block Parameters: Simscape Component e
DC_Motor
Source code Choose source
Settings
Parameters
Inertia: .01 ||g*cm“2 ~
Cancel Help Apply

Limitations

The subsystem being converted must consist entirely of blocks authored in Simscape
language, such as blocks from the Simscape Foundation library, add-on product libraries,
or custom blocks. Blocks from the Simscape “Utilities” library are not authored in
Simscape language, therefore:

'rad/s'},

See Also

» If the subsystem contains a Simscape Component block, then during the conversion
this block is replaced by its source component.

* Connection Port blocks are represented by the connect statements.

* Other blocks from the Utilities library (Solver Configuration, Simscape Bus, and so on)
are not allowed because they have no equivalent textual representation.

The subsystem being converted cannot contain multiple Simscape networks.

If the subsystem being converted contains nested subsystems, you might have to
manually edit the references to the generated files for nested subsystems when running
ssc_build on the package.

If you use blocks from Simscape libraries, keep the original subsystem used to generate
the composite component. Simscape language does not support forwarding tables or
versioning. As a result, if the underlying library blocks undergo changes in a future
release, a textual composite component generated from these blocks might stop working.
If that happens, open the original subsystem in the new release and rerun the conversion.

See Also

components | connections | ssc_build | ssc_mirror | ssc _protect |
subsystem2ssc

More About

. “Declaring Member Components” on page 2-75

. “Parameterizing Composite Components” on page 2-77
. “Specifying Component Connections” on page 2-82

. “Building Custom Block Libraries” on page 4-30

2-95

2 Creating Custom Components and Domains

Defining Component Variants

2-96

In this section...

“Conditional Sections” on page 2-96
“Rules and Restrictions” on page 2-97
“Example” on page 2-100

Physical modeling often requires incremental modeling approach. It is a good practice to
start with a simple model, run and troubleshoot it, then add the desired special effects,
like fluid compressibility or fluid inertia. Another example is modeling a diode with
different levels of complexity: linear, zener diode, or exponential. Composite components
often require conditional inclusion of a certain member component and a flexible
connection scheme.

Including different modeling variants within a single component requires applying control
logic to determine the model configuration. You achieve this goal by using conditional
sections in a component file.

Conditional Sections

A conditional section is a top-level section guarded by an if clause. Conditional sections
are parallel to other top-level sections of a component file, such as declaration or
equations sections.

A conditional section starts with an if keyword and ends with an end keyword. It can
have optional elseif and else branches. The body of each branch of a conditional
section can contain declaration blocks, equations, structure sections, and so on, but
cannot contain the setup function.

The if and elseif branches start with a predicate expression. If a predicate is true, the
branch gets activated. When all predicates are false, the else branch (if present) gets
activated. The compiled model includes elements (such as declarations, equations, and so
on) from active branches only.

component MyComp
[...]
if Predicatel
[...] % body of branchl
elseif Predicate2

Defining Component Variants

[...] % body of branch2
else

[...] % body of branch3
end

[...]
end

Unlike the if statements in the equations section, different branches of a conditional
section can have different variables, different number of equations, and so on. For
example, you can have two variants of a pipe, one that accounts for resistive properties
only and the second that also models fluid compressibility:

component MyPipe

parameters
fl ¢ = 0; % Model compressibility? (0 - no, 1 - yes)
end
[...] % other parameters, variables, branches
1f flc =0
equations
% first set of equations, resistive properties only
end
else
variables
% additional variable declarations, needed to account for fluid compressibility
end
equations
% second set of equations, including fluid compressibility
end
end
end

In this example, if the block parameter Model compressibility? (0 - no, 1 - yes) is set
to 0, the first set of equations gets activated and the block models only the resistive
properties of the pipe. If the block user changes the value of the parameter, then the
else branch gets activated, and the compiled model includes the additional variables and
equations that account for fluid compressibility.

Note Enumerations are very useful in defining component variants, because they let you
specify a discrete set of acceptable parameter values. For an example of how this
component can use enumeration, see “Using Enumeration in Predicates” on page 3-18.

Rules and Restrictions

Nested conditional sections are allowed. For example:

2-97

2 Creating Custom Components and Domains

2-98

component A

parameters
pl = 0;
p2 = 0;
p3 = 0;
end
if pl > 0
[...]
if p2 >0
[...]
end
if p3 > 0
[...]
end
[...]
end
end

Predicates must be parametric expressions, because the structure of a model must be
fixed at compile time and cannot change once the model is compiled. Using a variable in a
predicate results in a compile-time error:

component A
[...]

variables

v =0;
end

if v >0 % error: v>0 is not a parametric expression because v is a variable
[...]
else
[...]
end
end

Predicates may depend on parameters of the parent (enclosing) component. They may not
depend, directly or indirectly, on parameters of member (embedded) components or on
domain parameters:

component A
parameters
p=1
end
parameters(Access=private)
pp = C.p;
end
components
¢ = MyComp;
end
nodes

Defining Component Variants

n = MyDomain;

end

if p>0 % ok
[...]

elseif c.p > 0 % error: may not depend on parameters of embedded component
[...]

elseif n.p > 0 % error: may not depend on domain parameters
[...]

elseif pp > 0 % error: pp depends on c.p
[...]

end

end

Accessibility of class members declared inside conditional sections is equivalent to private
class members (Access=private). They are not accessible from outside the component
class, even if their branch is active.

The scope of the class members declared inside a conditional section is the entire
component class. For example:

component A

nodes
p = foundation.electrical.electrical;
n = foundation.electrical.electrical;

end

parameters
pl = 1;

end

if pl >0
components

rl = MyComponentVariantl;

end

else
components

rl = MyComponentVariant2;

end

end

connections
connect(p, rl.p);
connect(n, rl.n);

end

end

However, using a conditional member outside the conditional section when the branch is
not active results in a compilation error:

2-99

2 Creating Custom Components and Domains

2-100

component A

foundation.electrical.electrical;
foundation.electrical.electrical;
end
parameters
pl = 0;
end
if pl >0
components
rl = MyComponentVariantl;
end
end
connections
connect(p, rl.p); % error if pl=0 and the predicate is false
end
end

Parameters that are referenced by predicates of conditional sections, directly and
indirectly, must be compile-time parameters. The setup function may not write to these
parameters, for example:

component A

parameters
pl = 1;
end

if pl > 0 % pl is a compile-time parameter
[...]

else
[...]

end

function setup
tmp = pl;
pl = 10;

end

end

k to read from pl
rror: may not write to pl here

o
% 0
o

% €

Example

This simple example shows a component containing two resistors. The resistors can be
connected either in series or in parallel, depending on the value of the control parameter:

component TwoResistors
nodes

Defining Component Variants

p = foundation.electrical.electrical; % +:left

n = foundation.electrical.electrical; % -:right
end
parameters

pl = {1, 'Ohm'}; % Resistor 1

p2 = {1, 'Ohm'}; % Resistor 2

ct = 0; % Connection type (0 - series, 1 - parallel)
end

components (ExternalAccess=observe)
rl = foundation.electrical.elements.resistor(R=pl);
r2 = foundation.electrical.elements.resistor(R=p2);

end
if ct == % linear connection
connections
connect(p, rl.p);
connect(rl.n, r2.p);
connect(r2.n, n);
end
else % parallel connection
connections
connect(rl.p, r2.p, p);
connect(rl.n, r2.n, n);
end
end
end

To test the correct behavior of the conditional section, point a Simscape Component block
to this component file. Place the block in a circuit with a 10V DC voltage source and a
current sensor. With the default parameter values, the resistors are connected in series,
and the current is HA.

2-101

2 Creating Custom Components and Domains

Black Parameters: Simscape Component @

TwoResistors

Source code Choose source

Settings
Parameters

Resistor 1: 1 Ohm

Resistor 2: 1 Ohm

Connection type (0 - series, 1 -
parallel):

[OK J [Cancel] ’ Help Apply
N - - A
TwoResistors PS-Simulink Display
Current Sensor Convertar
Simscape
Caormnponent
flx) =0
DC Voltage Source (10 V) Salver
Configuration

1
I

If you change the value of the Connection type (0 - series, 1 - parallel) parameter to
1, the resistors are connected in parallel, and the current is 20A.

Electrical Reference

2-102

See Also

Black Parameters: Simscape Component

Simscape
Compaonent

DC Voltage Source (10W)

Current Sensor Converter

flx) =10

Salver
Configuration

1
!

Electrical Reference

See Also

More About

TwoResistors
Source cote
Settings
Parameters
Resistor 1: 1 Ohm -
Resistor 2: 1 Ohm -
Connection type (0 - series, 1 - 1
parallel):
OK] [Cancel] ’ Help Apply
- “(y
TwoResistors PS-Simulink Display

“Defining Conditional Visibility of Component Members” on page 2-105

2-103

2 Creating Custom Components and Domains

. “Component Variants — Series RLC Branch” on page 2-108
. “Component Variants — Thermal Resistor” on page 2-111

2-104

Defining Conditional Visibility of Component Members

Defining Conditional Visibility of Component Members

The annotations section in a component file lets you control visibility of component
members, such as parameters and nodes, in block icons and dialog boxes. When you
declare a component member, the ExternalAccess attribute sets the visibility of the
member in the user interface, that is, in block dialog boxes, simulation logs, variable
viewer, and so on. The annotations section serves a similar purpose, but it is especially
useful for block variants because it lets you define conditional visibility of component
members based on a predicate condition.

When you define component variants using conditional declarations, certain parameters,
variables, or ports can be used in one block variant but not in others. For example, you
have a component that models hydraulic pipelines with circular and noncircular cross
sections. For a circular pipe, you need to specify its internal diameter. For a noncircular
pipe, you need to specify its hydraulic diameter and pipe cross-sectional area. You can
now use the annotations section to control the visibility of these parameters in the

block dialog box:
component MyPipe
parameters
circular = true; % Circular pipe?
d in ={0.01, 'm" }; % Pipe internal diameter
area = { le-4, 'm™2' }; % Noncircular pipe cross-sectional area
D h = { 1.12e-2, 'm' }; % Noncircular pipe hydraulic diameter
end

if circular
% Hide inapplicable parameters

annotations
[area, D _h] : ExternalAccess=none;
end
equations
% first set of equations, for circular pipe
end
else
% Hide inapplicable parameter
annotations
d_in : ExternalAccess=none;
end
equations
% second set of equations, for noncircular pipe
end
end

[...] % other parameters, variables, branches, equations
end

Similar to other types of conditional declarations, a predicate of a conditional annotation
must be a parametric expression that evaluates to true or false. However, there is an
additional restriction that all the parameters used in the predicate of a conditional

2-105

2 Creating Custom Components and Domains

2-106

annotation must be either of type logical or enumerated. In this example, the circular
parameter is of type logical.

The annotations section lets you control visibility of the following component members:

¢ Parameters
e Variables

* Nodes
* Inputs
* OQOutputs

The annotations section also lets you specify conditional custom icons. This is
especially useful if the number of ports changes for different variants. For example:

component MyPipe
parameters
thermal variant = false; % Model thermal effects?
end
if thermal variant
% Use icon with additional thermal port
annotations
Icon = 'pipe thermal.jpg';
end
else
% Use regular icon, with two fluid ports
annotations
Icon = 'pipe.jpg';
end
end
[...] % Other parameters, variables, nodes, branches, equations
end

For more information on using custom block icons, see “Customize the Block Icon” on
page 4-48.

Rules and Restrictions

The predicate of a conditional annotation must be a parametric expression that evaluates
to true or false. All the parameters used in the predicate of a conditional annotation must
be either of type logical or enumerated.

Member attributes must be uniquely defined, which means that the same member cannot
be declared more than once, with different values of the same attribute. The only
exception to this rule is the use of ExternalAccess attribute in the annotations
section. You can declare a component member with a certain value of ExternalAccess,

See Also

and then specify a different ExternalAccess attribute value in the annotations
section, for example:

component MyPipe

parameters
circular = true; % Circular pipe?
end
parameters (ExternalAccess=none)
d in ={0.01, 'm' }; % Pipe internal diameter
[...]
end

if circular
% Expose pipe diameter
annotations
d in : ExternalAccess=modify;
end

[...]

In case of conflict, the ExternalAccess attribute value specified in the annotations
section overrides the value specified for that member in the declaration section. For a
complete component example using this approach, see “Component Variants — Thermal
Resistor” on page 2-111.

See Also

More About

“Defining Component Variants” on page 2-96
“Component Variants — Thermal Resistor” on page 2-111
“Component Variants — Series RLC Branch” on page 2-108

2-107

2 Creating Custom Components and Domains

Component Variants — Series RLC Branch

2-108

import foundation.electrical.electrical;
import foundation.electrical.elements.*;
component SeriesRLC

The following example shows a series RLC component that implements a single resistor,
inductor, or capacitor, or a series combination of these elements. The component uses
conditional sections to implement the control logic.

nodes
p = electrical; % +:left
n = electrical; % -:right
end

nodes (Access=protected, ExternalAccess=none)
ri electrical; % internal node between r and 1
lc electrical; % internal node between 1 and c
end
parameters
R {06, 'Ohm'};
L {06, 'H'};
C {inf, 'F'};
end
if R>0
components
r = resistor(R=R);
end
connections
connect(p, r.p);
connect(r.n, rl);
end
else
connections
connect(p, rl); % short circuit p--rl
end
end
if L >0
components
1 = inductor(l=L);
end
connections
connect(rl, l.p);
connect(l.n, 1c);
end
else

% electrical domain class definition
% electrical elements

Component Variants — Series RLC Branch

connections
connect(rl, lc); % short circuit rl--1c
end
end
if value(C, 'F') < inf
components
c = capacitor(c=C);
end
connections
connect(lc, c.p);
connect(c.n, n);
end
else
connections
connect(lc, n); % short circuit 1lc--n
end
end
end

The R, L, and C parameters are initialized to 0, 0, and inf, respectively. If the block user
specifies a nonzero resistance, nonzero impedance, or finite capacitance, the appropriate
branch gets activated. The active branch declares the appropriate member component
and connects it in series. Each of the else clauses short-circuits the appropriate nodes.

R=0 L=0 C=inf

AMA—— .

P i lc n

Internal nodes rl and 1c, which serve to connect the member components, should not be
accessible from outside the component. Set their Access attribute to protected or
private. Their ExternalAccess attribute is none, so that these nodes are not visible
on the block icon.

2-109

2 Creating Custom Components and Domains

See Also

More About

. “Defining Component Variants” on page 2-96

. “Parameterizing Composite Components” on page 2-77
. “Specifying Component Connections” on page 2-82

2-110

Component Variants — Thermal Resistor

Component Variants — Thermal Resistor

The following example shows a linear resistor with an optional thermal port. The
component uses conditional sections to implement the control logic. The annotations
sections within the conditional branches selectively expose or hide appropriate ports,
parameters, and variables based on the value of the control parameter. The two block
variants have a different number of ports, and therefore the custom block icon also
changes accordingly.

component CondResistor

Linear Resistor with Optional Thermal Port

If "Model thermal effects" is set to "Off", the block represents a
linear resistor. The voltage-current (V-I) relationship is V=I*R,
where R is the constant resistance in ohms.

If "Model thermal effects" is set to "On", the block represents a

resistor with a thermal port. The resistance at temperature Tl is given by
R(T) = RO*(1l+alpha(T1l-T0O)), where RO is the Nominal resistance at the
Reference temperature TO, and alpha is the Temperature coefficient.

0° 0% 0% 3% o° ° o° o° o°

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
H = foundation.thermal.thermal; % H:left

end

parameters

thermal effects = simscape.enum.onoff.off; % Model thermal effects
end

parameters (ExternalAccess=none
R={1, 'Ohm' };
TO0 = {300, 'K'};
alpha = {50e-6,"'1/K'};
tc = {10,'s'};
Kd= {le-3, 'W/K'};

Nominal resistance
Reference temperature
Temperature coefficient
Thermal time constant
Dissipation factor

0° o° o° P o° —

end

variables(ExternalAccess=none)
i={0, 'A"}; % Current
v={0, 'V'}3}; % Voltage
Tl = {value = {300, 'K'}, priority = priority.high}; % Temperature
end

2-111

2 Creating Custom Components and Domains

branches
i:p.1->n.i;
end
equations
V == p.V - Nn.v;
end
if thermal effects == simscape.enum.onoff.off
annotations
% Show non-thermal settings
Icon = 'custom resistor.png’';
[R, 1, v] : ExternalAccess=modify;
% Hide thermal node
H : ExternalAccess=none;
end
connections
connect(H, *); % Connect hidden thermal node to reference
end
equations
R*i == v;
Tl == T0O; % Temperature is constant
end
else
annotations
% Show thermal settings
Icon = 'custom resistor thermal.png';
[T1, To, alpha, tc, K d, H] : ExternalAccess=modify;
end

% Add heat flow + thermal equations
variables(Access=private)
Q={0, 'J/s' }; % Heat flow

end
branches
Q : H.Q -> *
end
equations
Tl == H.T;
let

mc = tc*K d; % mc in Q = m*c*dT
(T)

2-112

% Calculate R(T), protecting against negative values

Component Variants — Thermal Resistor

Rdem = R*(1l+alpha*(T1-T0));
R T = if Rdem > 0, Rdem else {0, 'Ohm'} end;
in
R T*i == v; % Electrical equation
mc * Tl.der == Q + R T*i*i; % Thermal equation
end
end

end
end

The component initially declares all the optional parameters and variables with the

ExternalAccess attribute set to none, and then exposes them selectively by using the

conditional annotations sections. The opposite method, of hiding inapplicable

members, is also valid, but this approach is more easily scalable when you have multiple

component configurations.

If the control parameter, Model thermal effects, is set to Of f, the block represents a
linear resistor. The only exposed block parameter is Nominal resistance, the Variables
tab lets you set targets for Current and Voltage, and the block icon has two ports, + and

Linear Resistor with Optional Thermal Port

If "Model thermal effects” is set to "Off", the block represents a linear resistor. The voltage-current (V-I)
relationship is V=I*R, where R is the constant resistance in ohms.

If "Model thermal effects” is set to "On", the block represents a resistor with a thermal port. The resistance at

temperature T1 is given by R(T) = RO*(1+alpha(T1-T0)), where RO is the Nominal resistance at the Reference
temperature T0, and alpha is the Temperature coefficient.

Source code Choose source

Settings

Parameters Variables

Model thermal effects: Off -

Nominal resistance: 1 | | Ohm ~

Cancel Help Apply

Block Parameters: Simscape Component e

2-113

2 Creating Custom Components and Domains

Block Parameters: Simscape Component e

Linear Resistor with Optional Thermal Port
If "Model thermal effects” is set to "Off", the block represents a linear resistor. The voltage-current (V-I)
relationship is V=I*R, where R is the constant resistance in ohms.

If "Model thermal effects” is set to "On", the block represents a resistor with a thermal port. The resistance at
temperature T1 is given by R(T) = RO*(1+alpha(T1-T0)), where RO is the Nominal resistance at the Reference
temperature T0, and alpha is the Temperature coefficient.

Source code Choose source

Settings

Parameters ~ Variables

Override Variable Priority Beginning Value Unit
| Current None ~ |0 | |A v|
| Voltage None ~ |0 | |V v|

Cancel Help Apply

~“\VVV\~-

If the Model thermal effects parameter is set to On, the block represents a resistor with
a thermal port, with temperature-dependent resistance. The block parameters, variables,
ports, and the custom block icons change accordingly.

2-114

Component Variants — Thermal Resistor

Block Parameters: Simscape Component e

Linear Resistor with Optional Thermal Port
If "Model thermal effects” is set to "Off", the block represents a linear resistor. The voltage-current (V-I)
relationship is V=I*R, where R is the constant resistance in ohms.

If "Model thermal effects” is set to "On", the block represents a resistor with a thermal port. The resistance at
temperature T1 is given by R(T) = RO*(1+alpha(T1-T0)), where RO is the Nominal resistance at the Reference
temperature T0, and alpha is the Temperature coefficient.

Source code Choose source

Settings

Parameters Variables

Model thermal effects: on -
Reference temperature: [300 | [|
Temperature coefficient: [50e-6 | [ux |
Thermal time constant: [10 | [s |
Dissipation factor: [1e3 | [wrk v]

Cancel Help Apply

Block Parameters: Simscape Component e

Linear Resistor with Optional Thermal Port

If "Model thermal effects” is set to "Off", the block represents a linear resistor. The voltage-current (V-I)
relationship is V=I*R, where R is the constant resistance in ohms.

If "Model thermal effects” is set to "On", the block represents a resistor with a thermal port. The resistance at
temperature T1 is given by R(T) = RO*(1+alpha(T1-T0)), where RO is the Nominal resistance at the Reference
temperature T0, and alpha is the Temperature coefficient.

Source code Choose source

Settings
Parameters ~ Variables

Override Variable Priority Beginning Value Unit

| Temperature High ~ | |300 ||K ~

OK Cancel Help Apply

2-115

2 Creating Custom Components and Domains

See Also

More About

. “Defining Component Variants” on page 2-96
. “Defining Conditional Visibility of Component Members” on page 2-105

2-116

Mechanical Component — Spring

Mechanical Component — Spring

The following file, spring.ssc, implements a component called spring.
The declaration section of the component contains:

» Two rotational nodes, r and c (for rod and case, respectively)
» Parameter k, with a default value of 10 N*m/ rad, specifying the spring rate

* Through and Across variables, torque t and angular velocity w, to be connected to the
rotational domain Through and Across variables later in the file

* Internal variable theta, with a default value of @ rad, specifying relative angle, that
is, deformation of the spring

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The t
r.t -> c.t statement indicates that the torque through the spring acts from node r to
node C.

The equation section starts with an assert construct, which checks that the spring rate
is greater than zero. If the block parameter is set incorrectly, the assert triggers a run-
time error.

The first equation, w == r.w - c.w, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain Across
variable). It defines the angular velocity across the spring as the difference between the
node angular velocities.

The following two equations define the spring action:

et
c W

k * theta, thatis, torque equals spring deformation times spring rate

theta.der, that is, angular velocity equals time derivative of spring deformation

component spring
nodes
r = foundation.mechanical.rotational.rotational;
c = foundation.mechanical.rotational.rotational;

end
parameters
k = { 10, 'N*m/rad' };
end
variables
theta = { 0, 'rad' };
t={0, 'N*m' }; % torque through

2-117

2 Creating Custom Components and Domains

w={0, 'rad/s' }; % velocity across
end
branches
t:r.t ->c.t; % torque through from node r to node ¢
end
equations
assert(k>0) % spring rate must be greater than zero
w == r.w - c.w; % velocity across between node r and node c

t == k * theta;
w == theta.der;
end
end

2-118

Electrical Component — Ideal Capacitor

Electrical Component — Ideal Capacitor

The following file, ideal capacitor.ssc, implements a component called
ideal capacitor.

The declaration section of the component contains:

* Two electrical nodes, p and n, for + and - terminals, respectively.
* One parameter, C, with a default value of 1 F, specifying the capacitance.

* Through and Across variables, current i and voltage v, to be connected to the
electrical domain Through and Across variables later in the file.

Variable v is declared with high initialization priority, to ensure the initial voltage of ©
V.

The branches section establishes the relationship between the component Through
variable and the component nodes (and therefore the domain Through variable). The i
p.1i -> n.1istatement indicates that the current through the capacitor flows from node
p to node n.

The equation section starts with an assert construct, which checks that the capacitance
value is greater than zero. If the block parameter is set incorrectly, the assert triggers a
run-time error.

The first equation, v == p.v - n.v, establishes the relationship between the
component Across variable and the component nodes (and therefore the domain Across
variable). It defines the voltage across the capacitor as the difference between the node
voltages.

The second equation defines the capacitor action: I = C*dV/dt, that is, output current
equals capacitance multiplied by the time derivative of the input voltage.

component ideal capacitor

Ideal Capacitor

Models an ideal (lossless) capacitor. The output current I is related
to the input voltage V by I = C*dV/dt where C is the capacitance.

o o° o°

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom
end
parameters

C=4{1, 'F'" }; % Capacitance

2-119

2 Creating Custom Components and Domains

2-120

end
variables
i={0, ‘A" }; %
v = {value = { 0,
end
branches

i:p.i->n.i; %
end

¢

equations
assert(C > 0)
V ==p.V - N.V; %
i == C*v.der; %
end
end

Current
'V' }, priority = priority.high}; % Voltage

Current through from node p to node n

Voltage across between node p and node n
Equation defining the capacitor action

No-Flow Component — Voltage Sensor

No-Flow Component — Voltage Sensor

The following file, voltage sensor.ssc, implements a component called

voltage sensor. An ideal voltage sensor has a very large resistance, so there is no
current flow through the sensor. Therefore, declaring a Through variable, as well as
writing branches and equation statements for it, is unnecessary.

The declaration section of the component contains:

» Two electrical nodes, p and n (for + and - terminals, respectively)
* An Across variable, voltage v1, to be connected to the electrical domain later in the

file
Note that a Through variable (current) is not declared, and there is no branches
section.
In the equation section, the first equation, v == p.v - n.v, establishes the relationship

between the component Across variable, voltage v1, and the component nodes (and
therefore the domain Across variable at these nodes). It defines the voltage across the
sensor as the difference between the node voltages.

The second equation defines the voltage sensor action:

. == v1, that is, output voltage equals the voltage across the sensor nodes

component voltage sensor

Voltage Sensor

The block represents an ideal voltage sensor. There is no current
flowing through the component, therefore it is unnecessary to
declare a Through variable (il), use a branches section, or
create an equation statement for current (such as il == 0).

o o o° o° o° o° o°

Connection V is a physical signal port that outputs voltage value.

outputs
V={0.0, 'V'}; % V:bottom
end
nodes
p = foundation.electrical.electrical; % +:top
n = foundation.electrical.electrical; % -:bottom
end
variables
vi={0, 'V'};
end

2-121

2 Creating Custom Components and Domains

2-122

equations
vl == p.v - n.v;
V == vl;
end
end

Grounding Component — Electrical Reference

Grounding Component — Electrical Reference

The easiest way to implement a grounding component is to use a connection to an implicit
reference node. For an example of a component that provides an electrical ground to a
circuit, see the source for the Electrical Reference block in the Foundation library:

component reference

% Electrical Reference :0.5

% Electrical reference port. A model must contain at least one
% electrical reference port (electrical ground).

% Copyright 2005-2016 The MathWorks, Inc.

nodes
V = foundation.electrical.electrical; % :top
end
connections
connect(V, *);
end
end

For more information on component connections and the implicit reference node syntax,
see “Connections to Implicit Reference Node” on page 2-84.

The following file, elec_reference.ssc, shows how to implement a behavioral model of
an electrical reference. This component has one node, where the voltage equals zero. It
also declares a current variable, makes it incident to the component node using the
branches section, and does not specify any value for it in the equation section.
Therefore, it can take on any value and handle the current flowing into or out of the
reference node.

The declaration section of the component contains:

* One electrical node, V

* A Through variable, current i, to be connected to the electrical domain later in the
file. Note that there is no need to declare an Across variable (voltage) because this is a
grounding component.

The branches section establishes the relationship between the component Through
variable, current i, and the component nodes (and therefore the domain Through

2-123

2 Creating Custom Components and Domains

variable). Thei : V.i -> * statement indicates that the current flows from node V to
the reference node, indicated as *.

The equation section of the component contains the equation that defines the grounding
action:

+ V.v == 0, thatis, voltage at the node equals zero

component elec_reference

Electrical Reference

Electrical reference port. A model must contain at least one
electrical reference port (electrical ground).

o o° o°

nodes
V = foundation.electrical.electrical; % :top
end
variables
i={0, ‘A" };
end
branches
i V.i -> *;
end
equations
V.v == 0;
end

end

See Also

More About

. “Specifying Component Connections” on page 2-82

2-124

Composite Component — DC Motor

Composite Component — DC Motor

In the Permanent Magnet DC Motor example, the DC Motor block is implemented as a
masked subsystem.

Inertia
W+ R
o
Rotational o
Electromechanical --- Friction
Converter o
] (]
(&>
cC

The following code implements the same model by means of a composite component,
called DC Motor. The composite component uses the components from the Simscape
Foundation library as building blocks, and connects them as shown in the preceding block
diagram.

component DC_Motor

DC Motor

This block models a DC motor with an equivalent circuit comprising a

series connection of a resistor, inductor, and electromechanical converter.
Default values are as for the DC Motor Simscape example, ssc_dcmotor.

o° o° o o°

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:left
R = foundation.mechanical.rotational.rotational; % R:right
C = foundation.mechanical.rotational.rotational; % C:right

end

parameters
rotor_resistance = { 3.9, 'Ohm' }; % Rotor Resistance
rotor_inductance = { 12e-6, 'H' }; % Rotor Inductance
motor_inertia ={ 0.01, 'g*cm™2' }; % Inertia
breakaway torque = { 0.02e-3, 'N*m' }; % Breakaway friction torque
coulomb_torque = { 0.02e-3, 'N*m' }; % Coulomb friction torque
viscous_coeff = { 0, 'N*m*s/rad' }; % Viscous friction coefficient
breakaway velocity = { 0.1, 'rad/s' }; % Breakaway friction velocity
back _emf constant ={ 0.072e-3, 'V/rpm' }; % Back EMF constant

end

components (ExternalAccess=observe)
rotorResistor = foundation.electrical.elements.resistor(R = rotor_resistance);
rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance);
rotationalElectroMechConverter = foundation.electrical.elements.rotational converter(K = ...
back _emf constant);
foundation.mechanical.rotational.friction(brkwy trq = ...
breakaway torque, Col trq = coulomb_ torque, .
visc _coef = viscous coeff, brkwy vel = breakaway velocity);

friction

2-125

2 Creating Custom Components and Domains

motorInertia = foundation.mechanical.rotational.inertia(inertia = motor inertia)
end

connections
connect(p, rotorResistor.p);
connect(rotorResistor.n, rotorInductor.p);
connect(rotorInductor.n, rotationalElectroMechConverter.p);
connect(rotationalElectroMechConverter.n, n);
connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
connect(rotationalElectroMechConverter.C, friction.C, C);

end

end

The declaration section of the composite component starts with the nodes section, which
defines the top-level connection ports of the resulting composite block:

» Two electrical conserving ports, + and -, on the left side of the block
» Two mechanical rotational conserving ports, R and C, on the right side of the block

g <Smscape; b

2-DC_Motar P

OG Motor

The parameters declaration block lists all the parameters that will be available in the
composite block dialog box.

2-126

Composite Component — DC Motor

"4 Block Parameters: DC Motor @
DC Motor

This block models a DC motor with an equivalent circuit comprising a series connection of a resistor, inductor and
electromechanical converter. Default values are as for the DC Motor Simscape example, "ssc_dcmotor?

Source code

Settings
FParameters
Rotor Resistance: 3.9 Ohm
Rotor Inductance: 12e-6 H
Inertia: 0.01 g*cm”™2
Breakaway friction torque: 0.02e-3 N*m
Coulomb friction torque: 0.02e-3 N*m
Viscous friction coefficient: 0 N*m/(rad/s)
Linear region velocity threshold: | 0.1 radfs
Back EMF constant: 0.072e-3 Virpm

[OK H Cancel H Help I Apply

The components block declares all the member (constituent) components, specifying
their complete names starting from the top-level package directory. This example uses the
components from the Simscape Foundation library:

Resistor

Inductor

Rotational Electromechanical Converter
Rotational Friction

Inertia

The components block also links the top-level parameters, declared in the parameters
declaration block, to the parameters of underlying member components. For example, the
Rotor Resistance parameter of the composite block (rotor resistance) corresponds
to the Resistance parameter (R) of the Resistor block in the Foundation library.

You do not have to link all the parameters of member blocks to top-level parameters. For
example, the Rotational Friction block in the Foundation library has the Transition

2-127

2 Creating Custom Components and Domains

2-128

approximation coefficient parameter, which is not mapped to any parameter at the top
level. Therefore, the composite model always uses the default value of this parameter
specified in the Rotational Friction component, 10 rad/s.

The connections block defines the connections between the nodes (ports) of the
member components, and their connections to the top-level ports of the resulting
composite block, declared in the nodes declaration block of the composite component:

» Positive electrical port p of the composite component is connected to the positive
electrical port p of the Resistor

* Negative electrical port n of the Resistor is connected to the positive electrical port p
of the Inductor

* Negative electrical port n of the Inductor is connected to the positive electrical port p
of the Rotational Electromechanical Converter

* Negative electrical port n of the Rotational Electromechanical Converter is connected
to the negative electrical port n of the composite component

» Mechanical rotational port R of the composite component is connected to the following
mechanical rotational ports: R of the Rotational Electromechanical Converter, R of the
Rotational Friction, and I of the Inertia

» Mechanical rotational port C of the composite component is connected to the following
mechanical rotational ports: C of the Rotational Electromechanical Converter and C of
the Rotational Friction

These connections are the textual equivalent of the graphical connections in the
preceding block diagram.

See Also

More About

. “About Composite Components” on page 2-74

. “Declaring Member Components” on page 2-75

. “Parameterizing Composite Components” on page 2-77

. “Specifying Initial Target Values for Member Variables” on page 2-80
. “Specifying Component Connections” on page 2-82

Working with Domain Parameters

Working with Domain Parameters

In this section...

“Declaring Domain Parameters” on page 2-129

“Propagation of Domain Parameters” on page 2-129

“Source Components” on page 2-130

“Propagating Components” on page 2-130

“Blocking Components” on page 2-131

“Custom Library with Propagation of Domain Parameters” on page 2-131

Declaring Domain Parameters

Similar to a component parameter, you declare each domain parameter as a value with
unit on page 2-6. However, unlike component parameters, the main purpose of domain
parameters is to propagate the same parameter value to all or some of the components
connected to the domain.

Propagation of Domain Parameters

The purpose of domain parameters is to propagate the same parameter value to all or
some of the components connected to the domain. For example, this hydraulic domain
contains one Across variable, p, one Through variable, q, and one parameter, t.

domain t_hyd

variables
p ={ 1le6, 'Pa' }; % pressure
end

variables(Balancing = true)
qg={ 1le-3, 'm"3/s' }; % flow rate

end
parameters
t = {303, 'K' }; % fluid temperature
end
end

All components with nodes connected to this domain will have access to the fluid
temperature parameter t. The component examples in the following sections assume that
this domain file, t _hyd.ssc, is located in a package named +THyd.

2-129

2 Creating Custom Components and Domains

2-130

When dealing with domain parameters, there are three different types of components.
There are some components that provide the domain parameter values used in the larger
model, there are some that simply propagate the parameters, and there are some that do
not propagate parameters.

For a complete example of building a custom block library based on this domain definition
and using propagation of domain parameters in a simple circuit, see “Custom Library
with Propagation of Domain Parameters” on page 2-131.

Source Components

Source components provide a way to modify the domain parameter values. You declare a
component parameter, and then use direct assignment to a domain parameter in the
component node declaration. This assignment establishes the connection, which lets the
parameter of the source component control the domain parameter value.

The following is an example of a source component, connected to the hydraulic domain
t hyd, defined in “Propagation of Domain Parameters” on page 2-129. This component
provides the value of the temperature parameter to the rest of the model.

component hyd_temp

% Hydraulic Temperature
Provide hydraulic temperature to the rest of the model

o°

parameters
t = {333, 'K' }; % Fluid temperature
end
nodes
a = THyd.t_hyd(t=t); % t_hyd node with direct parameter assignment
end
end

When you generate a Simscape block from this component file, the block dialog box will
have a parameter labelled Fluid temperature. You can then use it to enter the
temperature value for the hydraulic fluid used in the model. You cannot have more than
one block controlling the same domain parameter connected to a circuit, unless different
segments of the circuit are separated by a blocking component.

Propagating Components

The default setting for the Propagation component attribute is propagates. Most
components use this setting. If a component is configured to propagate its domain
parameters, then all public nodes connected to this domain have the same set of domain

Working with Domain Parameters

parameters. These parameters are accessible in equations and other sections of the
component file.

The following is an example of a propagating component h_temp sensor, connected to
the hydraulic domain t hyd, defined in “Propagation of Domain Parameters” on page 2-
129. It outputs the fluid temperature as a physical signal T. This example shows how you
can access domain parameters in the equation section of a component.

component h_temp sensor
% Hydraulic Temperature Sensor
Measure hydraulic temperature
outputs
T={0, 'K'}; % T:right
end
nodes
a = THyd.t hyd; % t _hyd node
end
equations
T == a.t; % access parameter from node in equations
end
end

o°

Blocking Components

Blocking components are those components that do not propagate domain parameters.
These components have their Propagation attribute set to blocks. If your model
requires different values of a domain parameter in different segments of the same circuit,
use blocking components to separate these segments and connect each segment to its
own source component. For more information, see “Attribute Lists” on page 2-136.

Custom Library with Propagation of Domain Parameters

The following example shows how you can test propagation of domain parameters by
putting together a simple circuit. In this example, you will:

* Create the necessary domain and component files and organize them in a package. For
more information, see “Organizing Your Simscape Files” on page 4-30.

* Build a custom block library based on these Simscape files. For more information, see
“Converting Your Simscape Files” on page 4-31.

» Use these custom blocks to build a model and test propagation of domain parameters.

To complete the tasks listed above, follow these steps:

2-131

2 Creating Custom Components and Domains

2-132

In a directory located on the MATLAB path, create a directory called +THyd. This is
your package directory, where you store all Simscape files created in the following
steps.

Create the domain file t hyd.ssc, as described in “Propagation of Domain
Parameters” on page 2-129.

domain t_hyd

variables
p ={ le6, 'Pa' }; % pressure
end

variables(Balancing = true)
qg={ 1le-3, 'm"3/s' }; % flow rate

end
parameters
t = {303, 'K' }; % fluid temperature
end
end

Create the component file hyd temp.ssc, as described in “Source Components” on
page 2-130. This component provides the value of the temperature parameter to the
rest of the model.

component hyd temp
% Hydraulic Temperature

% Provide hydraulic temperature to the rest of the model
parameters
t =4{ 333, 'K'}; % Fluid temperature
end
nodes

a = THyd.t _hyd(t=t); % t_hyd node with direct parameter assignment
end
end

Create the component file h temp sensor.ssc, as described in “Propagating
Components” on page 2-130. This component measures the value of the temperature
parameter and outputs it as a physical signal.

component h temp sensor
% Hydraulic Temperature Sensor
Measure hydraulic temperature
outputs
T={0, 'K'}; % T:right
end
nodes
a = THyd.t hyd; % t hyd node
end
equations
T == a.t; % access parameter from node in equations
end
end

o°

Working with Domain Parameters

In order to create a working circuit, you will need a reference block corresponding to
the domain type, as described in “Grounding Rules”. Create a reference component
for your t _hyd domain, as follows (name the component h_temp ref.ssc):

component h temp ref
Hydraulic Temperature Reference
Provide reference for thermohydraulic circuits

nodes

a = THyd.t hyd; % t hyd node
end
connections

connect(a, *);
end
end

o° o°

You can optionally define other components referencing the t hyd domain, but this
basic set of components is enough to create a working circuit. Now you need to build
a custom block library based on these Simscape files. To do this, at the MATLAB
command prompt, type:

ssC_build THyd;

This command generates a file called THyd 1ib in the directory that contains your
+THyd package. Before using this library, restart MATLAB to register the new
domain. Then open the custom library by typing:

THyd lib

Simscape Simscape Simscape
t_hyd node t_hyd node t_hyd nodeT
hyd_temp h_temp_ref |_temp_sens

Hydraulic Hydraulic Hydraulic
Temperature Temperature Temperature Sensor
Reference

Create a new Simscape model. To do this, type:

SSC_new

This command creates a new model, prepopulated with the following blocks:

2-133

2 Creating Custom Components and Domains

2-134

o DD—F@
P3-Simulink Scope

Simulink-PS
Converter

Converter

Salver
‘Configuration

9 Delete the Simulink-PS Converter block, because our model is not going to have any
Simulink input signals.

10 Drag the Hydraulic Temperature, Hydraulic Temperature Sensor, and Hydraulic
Temperature Reference blocks from THyd 1ib and connect them as follows:

Simscape
t_hyd nodeT L= | C]

[temp_sensi PS-Simulink
Converter Scope

Hydraulic
Temperatura Sensor

Simscape
t_hyd node
h_temp_ref

flx)=0

Salver

Configuration Hydraulic

Temperature
Reference

Simscape

t_hyd nods v

hyd_temp

Hydraulic
Temperature

11 Simulate the model and notice that the scope displays the value of the domain
temperature parameter, as it is defined in the hyd temp.ssc file, 333 K.

12 Double-click the Hydraulic Temperature block. Change the value of the Fluid
temperature parameter to 363 K.

Working with Domain Parameters

Block Parameters: Hydraulic Temperature

Hydraulic Temperature
Provide hydraulic temperature to the rest of the model
Source code

Settings

Parameters

Fluid temperature: 363 | | K

Cancel Help Apply

13 Simulate the model again and notice that the scope now displays the new value of the
domain temperature parameter.

2-135

2 Creating Custom Components and Domains

Attribute Lists

In this section...

“Attribute Types” on page 2-136
“Model Attributes” on page 2-136
“Member Attributes” on page 2-137

Attribute Types

The attributes appear in an AttributeList, which is a comma separated list of pairs, as
defined in the MATLAB class system grammar. Simscape language distinguishes between
two types of attributes: model attributes and member attributes.

Model Attributes

Model attributes are applicable only to model type component.

2-136

Attribute Lists

Attribute

Values

Default

Model
Classes

Description

Propagation

propagates
blocks
source (not
recommended)

propagates

component

Defines the domain data
propagation of the component. By
default, components propagate
domain data, such as domain
parameter values. If your model
requires different values of a
domain parameter in different
segments of the same circuit, use
blocks to designate a blocking
component.

Using the source value, along
with the setup function, is no
longer recommended; instead, use
direct assignment to a domain
parameter in the component node
declaration. See “Working with
Domain Parameters” on page 2-
129.

Hidden

true
false

false

component

Defines the visibility of the entire
component. This dictates whether
the component shows up in a
generated library or report.

Component model attributes apply to the entire model. For example:

component (Propagation = blocks) Separator

[
“©

end

component model goes here

Here, Propagation is a model attribute.

Member Attributes

Member attributes apply to a whole declaration block.

2-137

2 Creating Custom Components and Domains

Attribute Values Default Member Description
Classes

Access public public all Defines the read and write
private access of members. Public (the
protected default) is the most permissive

access level. There are no
restrictions on accessing public
members. Private members are
only accessible to the instance
of the component model and
not to external clients.
Protected members of a base
class are accessible only to
subclasses.

ExternalAccess |modify Depends on all Sets the visibility of the
observe the value of member in the user interface,
none Access that is, in block dialog boxes,

attribute: for simulation logs, variable viewer,
public, the and so on:

default is _ .
modify, for e modify — The member is
private and modifiable in the block
protected, dialogs and visible in the

the default is logs and viewer.

observe * observe — The member is

visible in the logs and
viewer, but not modifiable,
and therefore not visible, in
block dialogs.

* none — The member is
visible nowhere outside the
language.

2-138

Attribute Lists

Attribute Values Default Member Description
Classes
Balancing true false variables |Ifsetto true, declares
false Through variables for a domain.

You can set this attribute to
true only for model type
domain. See “Declare Through
and Across Variables for a
Domain” on page 2-8.

Event true false variables |If setto true, declares event
false variables for a component. You
can set this attribute to true
only for model type

component. See “Event
Variables” on page 2-67.

Conversion absolute absolute parameters |Defines how the parameter or
relative variables |variable units are converted for
use in equations, intermediates,
and other sections. See
“Parameter Units” on page 2-

16.
MATLABEvaluatio [default default parameters |If a member declaration
n compiletim variables |contains a declaration function
e that does not support code

generation, set this attribute to
compiletime. The declaration
function is then evaluated only
at compile time, and all the
function input parameters are
marked as compile-time only.
See “Declaration Functions” on
page 3-23.

The attribute list for the declaration block appears after MemberClass keyword. For
example:

parameters (Access = public,ExternalAccess = observe)

% parameters go here
end

2-139

2 Creating Custom Components and Domains

Here, all parameters in the declaration block are externally writable in language, but they
will not appear in the block dialog box.

Specifying Member Accessibility
The two attributes defining member accessibility act in conjunction. The default value of

the ExternalAccess attribute for a member depends on the value of the Access
attribute for that member.

Access Default ExternalAccess
public modify

protected observe

private observe

You can modify the values of the two attributes independently from each other. However,
certain combinations are prohibited. The compiler enforces the following rules:

* Members in the base class with Access=private are forced to have

ExternalAccess=none, to avoid potential collision of names between the base class
and the derived class.

* When Access is explicitly set to private or protected, it does not make sense to
explicitly set ExternalAccess=modify . In this situation, the compiler issues a
warning and remaps ExternalAccess to observe.

2-140

Subclassing and Inheritance

Subclassing and Inheritance

Subclassing allows you to build component models based on other component models by
extension. Subclassing applies only to component models, not domain models. The syntax
for subclassing is based on the MATLAB class system syntax for subclassing using the <
symbol on the declaration line of the component model:

component MyExtendedComponent < PackageName.MyBaseComponent
% component implementation here
end

By subclassing, the subclass inherits all of the members (parameters, variables, nodes,
inputs and outputs) from the base class and can add members of its own. When using the
subclass as an external client, all public members of the base class are available. All
public and protected members of the base class are available to the events, equation,
structure, and other sections of the subclass. The subclass may not declare a member
with the same identifier as a public or protected member of the base class.

The setup function of the base class is executed before the setup function of the
subclass.

Note

» Starting in R2019a, using setup is not recommended. Other constructs available in
Simscape language let you achieve the same results without compromising run-time
capabilities. For more information, see “setup is not recommended” on page 5-83.

The equations of both the subclass and the base class are included in the overall system
of equations.

For example, you can create the base class ElectricalBranch.ssc, which defines an
electrical branch with positive and negative external nodes, initial current and voltage,
and relationship between the component variables and nodes (and therefore, connects the
component variables with the Through and Across domain variables). Such a component
is not very useful as a library block, so if you do not want the base class to appear as a
block in a custom library, set the Hidden=true attribute value:

component (Hidden=true) ElectricalBranch
nodes

2-141

2 Creating Custom Components and Domains

p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % +:right
end
variables
i=4{0, '"A" };
v={0"'V"1}
end
branches
i:p.1->n.i;
end
equations
V == p.VvV - N.V;
end

end

If, for example, your base class resides in a package named +MyElectrical, then you
can define the subclass component Capacitor.ssc as follows:

component Capacitor < MyElectrical.ElectricalBranch
% Ideal Capacitor
parameters
c={1, 'F' };
end
equations
assert(c>0, 'Capacitance must be greater than zero');
i==c * v.der;
end
end

The subclass component inherits the p and n nodes, the i and v variables with initial
values, and the relationship between the component and domain variables from the base
class. This way, the Capacitor. ssc file contains only parameters and equations specific
to the capacitor.

2-142

Importing Domain and Component Classes

Importing Domain and Component Classes

You must store Simscape model files (domains and components) in package directories, as
described in “Organizing Your Simscape Files” on page 4-30. Like the MATLAB class
system, each package defines a scope (or namespace). You can uniquely identify a model
class name and access it using a fully qualified reference. For example, you can access
the domain model class electrical using foundation.electrical.electrical.

In composite components, class member declarations include user-defined types, that is,
component classes. If you do not use import statements, accessing component class
names from a different scope always requires a fully qualified reference. For example, the
Foundation library Resistor block is:

foundation.electrical.elements.resistor

An import mechanism provides a convenient means to accessing classes defined in
different scopes, with the following benefits:

» Allows access to model class names defined in other scopes without a fully qualified
reference

* Provides a simple and explicit view of dependencies on other packages

There are two types of syntax for the import statement. One is a qualified import, which
imports a specific package or class:

import package or class;

The other one is an unqualified import, which imports all subpackages and classes under
the specified package:

import package.*;

The package or class name must be a full path name starting from the library root (the
top-level package directory name) and containing subpackage names as necessary.

You must place import statements at the beginning of a Simscape file. The scope of
imported names is the entire Simscape file, except the setup section. For example, if you
use the following import statement:

import foundation.electrical.elements.*;

at the beginning of your component file, you can refer to the Foundation library Resistor
block elsewhere in this component file directly by name:

2-143

2 Creating Custom Components and Domains

2-144

rotorResistor = resistor(R = rotor _resistance);

See the import on page 5-53 reference page for syntax specifics. For an example of
using import statements in a custom component, see the Transmission Line example. To
view the Simscape file, open the example, then double-click Open the transmission line
component library. In the TransmissionLine lib window, double-click the T-Section
Transmission Line block and then, in the block dialog box, click Source code.

See Also

Related Examples
. “Composite Component Using import Statements” on page 2-145

Composite Component Using import Statements

Composite Component Using import Statements

This example shows how you can use import statements to implement a composite
component equivalent to the one described in “Composite Component — DC Motor” on
page 2-125 . The two components are identical, but, because of the use of the import
statements, the amount of typing in the nodes and components sections is significantly
reduced.

import foundation.electrical.electrical; % electrical domain class definition

import foundation.electrical.elements.*; % electrical elements

import foundation.mechanical.rotational.*; % mechanical rotational domain and elements
component DC Motorl

% DC Motorl

% This block models a DC motor with an equivalent circuit comprising a

% series connection of a resistor, inductor, and electromechanical converter.

% Default values are as for the DC Motor Simscape example, ssc_dcmotor.

nodes
p = electrical; % +:left
n = electrical; % -:left
R = rotational; % R:right
C = rotational; % C:right
end
parameters
rotor_resistance 3.9, 'Ohm' }; Rotor Resistance
rotor_inductance 12e-6, 'H' }; Rotor Inductance

Inertia

Breakaway friction torque
Coulomb friction torque
Viscous friction coefficient
Breakaway friction velocity
Back EMF constant

motor_inertia

breakaway_ torque

coulomb_torque

viscous_coeff

breakaway velocity

back _emf_constant
end

0.01, 'g*cm™2' };
0.02e-3, 'N*m' };
0.02e-3, 'N*m' };

0, 'N*m*s/rad' };
0.1, 'rad/s' };
0.072e-3, 'V/rpm' };

0 o° o° o o° of of o°

LI | | | B 1
A P A e e

components (ExternalAccess=observe)

rotorResistor = resistor(R = rotor_resistance);
rotorInductor = inductor(l = rotor_inductance);
rotationalElectroMechConverter = rotational converter(K = back emf_constant);
friction = friction(brkwy_trq = breakaway torque, Col_trq = coulomb_torque,
visc_coef = viscous _coeff, brkwy vel = breakaway velocity);
motorInertia = inertia(inertia = motor_inertia);
end
connections

connect(p, rotorResistor.p);
connect(rotorResistor.n, rotorInductor.p);
connect(rotorInductor.n, rotationalElectroMechConverter.p);
connect(rotationalElectroMechConverter.n, n);
connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
connect(rotationalElectroMechConverter.C, friction.C, C);

end

end

Consider the three import statements at the beginning of the file. The first one:

2-145

2 Creating Custom Components and Domains

2-146

import foundation.electrical.electrical;

is a qualified import of the Foundation electrical domain class. Therefore, in the nodes
section, you can define the p and n nodes simply as electrical.

The second statement:

import foundation.electrical.elements.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.electrical.elements subpackage and therefore gives you direct access
to all the Foundation electrical components in the Elements sublibrary, such as
inductor, resistor, and rotational converter.

The third statement:

import foundation.mechanical.rotational.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.mechanical. rotational subpackage and therefore gives you direct
access to the Foundation mechanical rotational domain definition (rotational) and
components (such as friction and inertia).

The nodes block declares two electrical nodes, p and n, and two mechanical rotational
nodes, R and C.

The components block declares all the member (constituent) components, using the
following components from the Simscape Foundation library:

* Resistor

e Inductor

* Rotational Electromechanical Converter

* Rotational Friction

e Inertia

Because of the import statements at the top of the file, these classes already exist in the

scope of the file, and you do not have to specify their complete names starting from the
top-level package directory.

See Also

See Also

Related Examples
. “Composite Component — DC Motor” on page 2-125

More About

. “Importing Domain and Component Classes” on page 2-143

2-147

Advanced Techniques

* “Mode Chart Modeling” on page 3-2

» “Switch with Hysteresis” on page 3-6
* “Enumerations” on page 3-14

* “Declaration Functions” on page 3-23
* “Simscape Functions” on page 3-27

3 Advanced Techniques

Mode Chart Modeling

3-2

In this section...

“About Mode Charts” on page 3-2
“Mode Chart Syntax” on page 3-3
“Mode Chart Example” on page 3-3

About Mode Charts

Mode charts provide an intuitive way to model components characterized by a discrete
set of distinct operating modes. A car clutch is a good example of such a component. It
has several operating modes, with each mode being defined by a different set of
equations. It also has a transition logic, with a set of predicate conditions defining when
the clutch transitions from one mode to another. It is possible to model this component
using primitive constructs, such as event variables and edge operators, but this way of
modeling lacks readability. For more complex components, the file becomes cumbersome
and unwieldy. Every time you model a component with multiple operating modes and
transitions, this component is a good candidate for a mode chart implementation.

These constructs in Simscape language let you perform mode chart modeling:

* modecharts — A top-level section in a component file. It can contain one or more
modechart constructs.

* modechart — A named construct that contains a textual representation of the mode
chart: modes, transitions, and an optional initial mode specification.

* modes — A section in a mode chart that describes all the operating modes. It can
contain one or more mode constructs.

* mode — A named construct that corresponds to a distinct operating mode of the
component, defined by a set of equations.

 transitions — A section in a mode chart that describes transitions between the
operating modes, based on predicate conditions.

* initial — An optional section in a mode chart that specifies the initial operating
mode, based on a predicate condition. If the predicate is not true, or if the initial
section is missing, then the first mode listed in the modes section is active at the start
of simulation.

Mode Chart Modeling

Mode Chart Syntax

In its simplest form, the hierarchical structure of a modecharts section can look like this:

modecharts
mcl = modechart
modes
mode ml
equations

end

end

mode m2
equations

end
end
end
transitions
ml->m2 : pl;
end
initial
m2 : p2;
end
end
end

It contains one mode chart, mc1, with two modes, m1 and m2.
The system transitions from mode m1 to mode m2 when the predicate condition p1 is true.

If the predicate condition p2 is true, the simulation starts in mode m2, otherwise in mode
ml.

In this example, the transitions section does not define a transition from mode m2 to

mode ml. Therefore, according to this mode chart, once the system reaches mode m2, it
never goes back to mode m1l.

Mode Chart Example

Use this simple example to understand how the mode charts work. For a more detailed
example, see “Switch with Hysteresis” on page 3-6.

3-3

3 Advanced Techniques

component ExampleChart

inputs
ul = 0;
end

outputs
y =0;

parameters
p=1

modecharts (ExternalAccess = observe)
mcl = modechart

modes
mode ml
equations
==];
end
end
mode m2
equations
==2;
end
end
mode m3
equations
==3;
end
end
end
transitions

ml->m2 : ul<0;
m2->m3 : ul>0;

end

initial
m2 : p<0;

end

end
end

See Also

end

The component implements a simple chart with three operating modes:

* In the first mode, the output signal equals 1.
* In the second mode, the output signal equals 2.
* In the third mode, the output signal equals 3.

The component transitions from the first to the second mode when the input signal is
negative, and from the second to the third mode when the input signal is positive.

The initial mode depends on the block parameter value: if parameter p is negative,
simulation starts with the block in the second mode, otherwise — in the first mode.

See Also

More About

. modecharts

. modes

. transitions

. initial

. “Switch with Hysteresis” on page 3-6

3 Advanced Techniques

Switch with Hysteresis

3-6

The Switch block in the Simscape Foundation library implements a switch controlled by
an external physical signal. The block uses an if-else statement. If the external
physical signal at the control port is greater than the threshold, then the switch is closed,
otherwise the switch is open.

This example implements a switch with hysteresis applied to the switching threshold
level. The hysteresis acts to prevent rapid spurious switching when the control signal is
noisy.

The switch has two distinct operating modes, shown in the diagram. If the external

physical signal at the control port is greater than the upper threshold, then the switch is
closed. If the signal is lower than the lower threshold, the switch is open.

u=T open

CLOSED OPEN

v ==1"R_closed v ==1/G_open

uxT closed

The following component implements the logic in the diagram by using a mode chart.

component delayed switch
% Switch with Hysteresis

inputs
u={0.0, '1'};
end

nodes
p = foundation.electrical.electrica
n = foundation.electrical.electrica
end

% +

1
1; % -:right

Switch with Hysteresis

parameters
R closed = { 0.01, 'Ohm' }; % Closed resistance R closed
G open = { le-8, '1/0hm' }; % Open conductance G open
T closed = { 0.5, '1' }; % Upper threshold
T open ={0, '1'}; % Lower threshold
InitMode = switching.open; % Initial Mode

end

variables
i={0, 'A' }; % Current
v={0, 'V'} % Voltage

end

branches
i: p.i->n.i;

end

% Validate parameter values
equations

assert(T _closed >= T open, 'Upper threshold must be higher than Lower threshold');
end

modecharts (ExternalAccess = observe)
ml = modechart

modes
mode CLOSED
equations
V == p.V - N.v;
v == i*R closed;
end
end
mode OPEN
equations
V == p.V - N.v;
v == i/G_open;
end
end
end
transitions

CLOSED -> OPEN : u < T open;
OPEN -> CLOSED : u > T closed;

end
initial
OPEN : InitMode <= 0;
end
end
end
end

The mode chart m1 defines two modes, CLOSED and OPEN. Each mode has an equations

section that lists all the applicable equations. The transitions section defines the
transitions between the operating modes, based on predicate conditions:

* The switch transitions from CLOSED to OPEN when the control signal falls below the
lower threshold, T open.

3 Advanced Techniques

* The switch transitions from OPEN to CLOSED when the control signal rises above the
upper threshold, T _closed.

The initial section specifies the initial operating mode, based on a predicate condition:

» If the predicate is true (that is, the Initial Mode parameter value is less than or equal
to 0), then the OPEN mode is active at the start of simulation.

» If the predicate is not true, then the CLOSED mode (the first mode listed in the modes
section) is active at the start of simulation.

Note The Initial Mode parameter uses an enumeration:

classdef switching < int32

enumeration

open (0)

closed (1)
end
methods(Static)

function map = displayText()
map = containers.Map;

map('open') = 'Switch is open';
map('closed') = 'Switch is closed';
end
end
end

For the component to work as described, this enumeration needs to be in a separate
switching.m file. The file can be located either on the MATLAB path or in a package
imported into the component. In general, enumerations are very useful in mode charts,
because they let you specify a discrete set of acceptable parameter values. For more
information, see “Enumerations” on page 3-14.

To verify the correct component behavior, deploy it in a Simscape Component block.
Create a simple test model, as shown, with all the blocks using the default parameter
values.

3-8

Switch with Hysteresis

v

Sine Wave

o

[= u Simscape . A |
W o)
Simulink-P5 '_dElIared switch R | P5-Simulink
Converter Simscape Current Sensor Converter
Component
+ -
R2
C D Voltage Source
fix)=0
Salver
Configuration

1

— Electrical Reference

Scope

3-9

3 Advanced Techniques

Block Parameters: Simscape Component
Delayed Switch
Source code Choose source
Settings
Closed resistance R_closad: 0.01 Ohm -
Open conductance G_open: 1e-8 1/0hm -
Upper threshold: 0.5
Lower threshold: 0
Initial Mode: Switch is open ']
[OK] [Cancel] [Help] Apply

Simulate the model with the default values.

3-10

Switch with Hysteresis

-

4 Scope E@

File Tools View Simulation Help u

-l ae® P =R ORI

Ready Sample based | T=10.000

The Initial Mode parameter value is Switch is open. This enumerated value
evaluates to 0, which makes the predicate in the initial section true. Therefore, at the
start of simulation the switch is open and no current flows through the resistor R1. When
the control signal value reaches 0.5 (the Upper threshold parameter value), the switch
closes and the current through the branch, based on the other parameter values, is 1A.

When the control signal falls below 0 (the Lower threshold parameter value), the switch
opens.

3-11

3 Advanced Techniques

Now change the Initial Mode parameter value to Switch is closed and simulate the
model. The enumerated value evaluates to 1, the predicate condition in the initial
section is no longer true, and therefore the first mode listed in the modes section is
active. At the start of simulation, the switch is closed, and it stays closed until the control
signal falls below 0.

P)

4 Scope El@

File Tools VWiew Simulation Help &

R N ON =R R e R P

Ready Sample based | T=10.000

3-12

See Also

See Also

More About

modecharts

modes

transitions

initial

“Mode Chart Modeling” on page 3-2
“Enumerations” on page 3-14

3-13

3 Advanced Techniques

Enumerations

In this section...

“Enumerations in Simscape Language” on page 3-14

“Specifying Display Strings for Enumeration Members” on page 3-15
“Evaluating Enumeration Members” on page 3-16

“Using Enumeration in Event Variables and when Clauses” on page 3-18
“Using Enumeration in Predicates” on page 3-18

“Using Enumeration in Function Arguments” on page 3-20

“Rules and Restrictions” on page 3-21

Enumerations in Simscape Language

Simscape language supports MATLAB enumerations in:

* Component parameters

* Event variables and when clauses

* Equation predicates

* Conditional declaration predicates

* Function arguments (such as an interpolation method in tablelookup)
* Mode charts

You define enumerations using a MATLAB enumeration class. For more information, see
“Enumerations” (MATLAB).

The enumeration class must derive from the int32 type, for example:

classdef offon < int32
enumeration
off (0)
on (1)
end
end

Save the enumeration class definition in a .m file with the same name as the class. For
more information, see “Rules and Restrictions” on page 3-21.

3-14

Enumerations

You can then use this enumeration in a component parameter:

parameters
fl ¢ = offon.off; % Fluid compressibility
end

In the resulting block dialog, the Fluid compressibility parameter will have a drop-down
list of values, of f and on, with off as the default.

Specifying Display Strings for Enumeration Members

When using enumerations in component parameters, you can specify user-friendly strings
to be displayed in the block dialog, instead of member identifiers:

classdef damping < int32

enumeration

direct (0)

derived (1)
end
methods(Static)

function map = displayText()
map = containers.Map;

map('direct') = 'By damping value';
map('derived') = 'By no-load current';
end

end
end

You can then use this enumeration in a component parameter, for example:
parameters

r damp = damping.direct; % Rotor damping parameterization
end

In the resulting block dialog, the Rotor damping parameterization parameter has a
drop-down list of values:

* By damping value
* By no-load current

By damping value is the default value.

3-15

3 Advanced Techniques

Block Parameters: DC Motor @

DC Motor

This block represents the electrical and torque characteristics of a DC motor.

The block assumes that no electromagnetic energy is lost, and hence the back-emf and torque constants have the
same numerical value when in SI units. Motor parameters can either be specified directly, or derived from no-load
speed and stall torque. If no information is available on armature inductance, this parameter can be set to some
small non-zero value,

When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R
ports. Motor torque direction can be changed by altering the sign of the back-emf or torque constants.

Farameters

Electrical Torque | Mechanical |

Model parameterization: [B',r equivalent circuit parameters -
Armature resistance: 3.9 Ohm -
Armature inductance: 1.2e-5 H -
Define back-emf or torque -
constant: [Spemﬁ,r back-emf constant]
Back-emf constant: 7.2e-5 Virpm -
Rotor damping parameterization: [Ely damping value V]
[OK] [Cancel] [Help] Apply

For a detailed example of using enumeration with display strings in a component
parameter, see “Switch with Hysteresis” on page 3-6.

Evaluating Enumeration Members
If an enumeration class derives from a built-in numeric class, the subclass inherits

ordering and arithmetic operations that you can apply to the enumerated names.
Enumeration classes used in Simscape language must derive from the int32 type.

3-16

Enumerations

Therefore, when used in mathematical expressions, enumeration members convert to
integers according to the specified value. For example, the “Switch with Hysteresis” on
page 3-6 component uses this enumeration:

classdef switching < int32

enumeration

open (0)

closed (1)
end
methods (Static)

function map = displayText()
map = containers.Map;

map('open') = 'Switch is open';
map('closed') = 'Switch is closed';
end
end
end

The enumeration is used in the Initial Mode parameter declaration:
parameters

InitMode = switching.open; % Initial Mode
end

Then, the initial section of the mode chart uses the Initial Mode parameter value in
the predicate expression:
initial
OPEN : InitMode <= 0;
end

When the Initial Mode parameter value is Switch is open, the corresponding
enumeration member, open (0), evaluates to 0, and the predicate is true. Therefore, at
the start of simulation the switch is open.

Conversely, when the parameter value is Switch is closed, the corresponding

enumeration member, closed (1), evaluates to 1, and the predicate is false. For more
information, see “Switch with Hysteresis” on page 3-6.

3-17

3 Advanced Techniques

Using Enumeration in Event Variables and when Clauses

The previous sections discussed using enumerations to declare component parameters
with a discrete set of acceptable values. However, you can also use enumerations to
declare event variables, because they also have a discrete set of values.

Event variables are piecewise constant, that is, they change values only at event instants
(by using the when clause), and keep their values constant between events.

For example:

variables (Event = true)
X = myEnum.a;
end
events
when edge(time > {1.0, 's'})
X = myEnum.b;
end
end

Using Enumeration in Predicates

The “Switch with Hysteresis” on page 3-6 component shows an example of using an
enumerated parameter in a mode chart predicate.

Another good practice is using enumerated parameters in conditional declaration
predicates, to define block variants. For example, you can have two variants of a pipe, one
that accounts for resistive properties only and the second that also models fluid
compressibility:

component MyPipe
parameters
fl ¢ = offon.off; % Fluid compressibility
end
[...] % other parameters, variables, branches
if fl ¢ == offon.off
equations
% first set of equations, resistive properties only
end
else
variables
% additional variable declarations, needed to account for fluid compressibility
end
equations
% second set of equations, including fluid compressibility
end

3-18

Enumerations

end
end

In this example, the block parameter Fluid compressibility is using the offon
enumeration:

classdef offon < int32
enumeration
off (0)
on (1)
end
end

In the resulting block dialog, the Fluid compressibility parameter has a drop-down list
of values, off and on, with off as the default. If the parameter is set to off, the first set
of equations gets activated and the block models only the resistive properties of the pipe.
If the block user changes the value of the parameter, then the else branch gets
activated, and the compiled model includes the additional variables and equations that
account for fluid compressibility. For more information on defining block variants, see
“Defining Component Variants” on page 2-96.

Likewise, you can use enumerated parameters and event variables in equation predicates:

parameters
p = myEnum.a;
end
variables
X 0;
y =0;
end
equations
if p == myEnum.a
y == x * 100;
elseif p == myEnum.b
y == x * 0.01;
else % (p == myEnum.c)
y = X;
end
end

3-19

3 Advanced Techniques

Using Enumeration in Function Arguments

Another way to use enumerations is in function arguments. For example, the
tablelookup function has two interpolation methods, linear and smooth, and three
extrapolation methods, linear, nearest, and error.

The Foundation library includes built-in enumerations, interpolation.mand
extrapolation.m:

classdef interpolation < int32

enumeration
linear (1)
smooth (2)

end

methods (Static)

function map = displayText()

map = containers.Map;

map('linear') = 'Linear';
map('smooth') = 'Smooth';
end
end

end

classdef extrapolation < int32

enumeration
linear (1)
nearest (2)
error (3)

end

methods(Static)

function map = displayText()

map = containers.Map;

map('linear') = 'Linear';
map('nearest') = 'Nearest';
map('error') = 'Error’;
end
end
end

These enumerations are located in the directory matlabroot\toolbox\physmod
\simscape\library\m\+simscape\+enum.

You can use these enumerations to declare component parameters, and then use these
parameters as function arguments:

3-20

Enumerations

parameters
interp = simscape.enum.interpolation.linear; % Interpolation method
extrap = simscape.enum.extrapolation.linear; % Extrapolation method
end
equations
o == tablelookup(xd, yd, x, interpolation = interp _method, extrapolation = extrap_method);
end

Instead of providing fully qualified names, you can use the import statement to reduce
the amount of typing:

import simscape.enum.*

parameters

interp = interpolation.linear; % Interpolation method

extrap = extrapolation.linear; % Extrapolation method
end
equations

o == tablelookup(xd, yd, x, interpolation = interp, extrapolation = extrap);
end

Rules and Restrictions

Enumeration definitions are global. You define an enumeration once, in a separate file,
and can then use the same enumeration in multiple components.

The file containing the enumeration class definition must reside on the MATLAB path or
in a package directory. For more information about package directories, see “Organizing
Your Simscape Files” on page 4-30.

Parameters that have enumerated values are marked as Compile-time only in the block
dialogs.

Similar to MATLAB enumerations, you can define more than one identifier for the same
integer value, for example:

classdef myColor < int32
enumeration
red (0)
blue (1)
yellow (2)
green (0)
end
end

The first identifier in the enumeration block with a given integer value is the actual
identifier, and subsequent identifiers are aliases.

3-21

3 Advanced Techniques

Note Although multiple identifiers with the same integer value are allowed, MathWorks
recommends using unique integer values within a Simscape language enumeration set,
for better clarity.

See Also

Related Examples
. “Switch with Hysteresis” on page 3-6

3-22

Declaration Functions

Declaration Functions

In this section...

“Multiple Return Values” on page 3-24
“Restriction on Values with Units” on page 3-24

“Run-Time Compatibility” on page 3-25

You can use declaration functions to compute derived parameter values or initialize
variables, instead of doing this inside the setup function.

Note Starting in R2019a, using setup is not recommended. Other constructs available in
Simscape language let you achieve the same results without compromising run-time
capabilities. For more information, see “setup is not recommended” on page 5-83.

Declaration function is a MATLAB function used inside a member declaration section in a
Simscape file. A declaration function can be any MATLAB function (even if it is not
supported in the Simscape language equations section), including user-defined
functions on the MATLAB path. For example:

component A

parameters

pl = 1;
p2 = 0;
end

parameters(Access = private)
pDerived = gamma(pl) + p2;
end
variables(Access = private)
vDerived = {value = {my fcn(pl,p2) + 1, 'm'}, priority = priority.high };
end
equations

end
end

Use the Access=private attribute for member declaration unless all the arguments of
the declaration function are constants.

Exercise caution when using persistent variables inside a declaration function, because
this may lead to inconsistent results for multiple simulation runs.

3-23

3 Advanced Techniques

3-24

Multiple Return Values

Declaration functions can return multiple values. They follow the general MATLAB
function conventions for multiple return values. For example, if my fcn() is a declaration
function that returns three values:

[id1l, ~, id3] = my_fcn(); % omit the second return value

[id1] = my fcn(); % rules of single assignment apply, nonrequested return values ignored
The following restrictions apply:

* You can use multiple value assignments on the left-hand side only for parameters and
variables with the Access=private attribute.

* When omitting return values using the placeholder attribute (~), at least one value
must be assigned. Empty declarations produce an error in Simscape language.

Restriction on Values with Units

Inputs and outputs of a declaration function must be unitless, that is, have a unit of '1"'.
Therefore, you cannot directly pass parameter values, with units, as declaration function
inputs.

For example, parameter p has the units of 'm'. To use it as an input for the myfcn
function, use the value function to get the unitless value of the parameter.

parameters
p=A{1,'m}
end
parameters(Access = private)
pd = my fcn(value(p,'m')); % extract unitless value from p
end

In the previous example, pd is a unitless parameter. To declare it as a value with unit, use
the {value, 'unit'} syntax, for example:

pd = {my fcn(value(p,'m')),'m/s'};
For multiple input and return values with units, use this syntax:
value,z value] = my fcn(value(a,'V'),value(b,'V'));

{y_value, 'V'};

ly
y
z {z_value,'V'};

Declaration Functions

For more information, see “Declaring a Member as a Value with Unit” on page 2-6.

Run-Time Compatibility

Member declarations for parameters and variables can include calls to MATLAB functions
that generate code.

By default, the declaration function will be evaluated at run time if a run-time parameter
appears in its input parameters. Otherwise, it will be evaluated at compile time.

In this example, my fcn is a MATLAB function that supports code generation:

component A

parameters

pl = 1;
p2 = 0;
end

parameters(Access = private)
pDerived = my fcn(pl,p2);

end

equations

end
end

If p1 or p2 is designated as Run-time in the block dialog, then my fcn is evaluated at
run time, and you can tune these parameter values without regenerating code.

If my fcn does not support code generation, you can set the member
attributeMATLABEvaluation=compiletime, to prevent the block user from accidentally
designating any of the function input parameters as Run-time in the block dialog:

component A

parameters
pl = 1;
p2 = 0;
end

parameters(Access = private,MATLABEvaluation = compiletime)
pDerived = my fcn(pl,p2);

end

equations

end
end

3-25

3 Advanced Techniques

If you set this attribute, the declaration function will be evaluated only at compile time,
and the block parameters pl and p2 will be marked as Compile-time only.

To work with run-time parameters:

* The declaration function must be in an unprotected MATLAB file
* All MATLAB code called must be MATLAB Coder™ compatible

* Subfunctions can be in protected MATLAB files, but to use them with run-time
parameters:

* Use coder.allowpcode('plain')
* Turnon lint: %#codegen

For more information, see “Run-Time Parameters”.

3-26

Simscape Functions

Simscape Functions

In this section...

“File Structure and Syntax” on page 3-27

“Rules and Restrictions” on page 3-27

“Using Simscape Functions” on page 3-29
“Recommended Ways of Code Reuse” on page 3-29

Simscape functions model a class of pure first-order mathematical functions with explicit
input-output relationship. These functions explicitly map the inputs of numerical values
into outputs of numerical values by using declarative expressions. When a component
calls a Simscape function, numerical input values are passed to the function, which then
evaluates these declarative expressions to compute the output values.

File Structure and Syntax

Each function must be in a separate Simscape file. The file name must match the function
name. For example, function foo must be in a file called foo.ssc.

The Simscape function file must start with the keyword function, followed by the
function header, which includes the function name, inputs, and outputs. For example:

function out = MyFunction(inl,in2)
If the function has multiple return values, the syntax is:
function [outl,out2] = MyFunction(inl,in2)
The body of the function must be enclosed inside the definitions section, for example:
function out = SumSquared(inl,in2)
definitions
out = inl”™2 + 2*inl*in2 + in2"2;

end
end

Rules and Restrictions

Syntax rules:

3-27

3 Advanced Techniques

3-28

The file name must match the function name. For example, function foo must be in a
file called foo.ssc.

One or more output parameters are allowed.

If an output parameter is not used on the left-hand side of the definitions section,
you get an error.

Zero or more input parameters are allowed.

When the function is called, the number of input arguments must match the number of
input parameters.

Input parameters are positional. This means that the first input argument during the
function call is passed to the first input parameter, and so on. For example, if you write
an equation:

0 == Suquuared(5,2);

then inlis 5 and in2 is 2.

If the function has multiple return values, they are also positional. That is, the first
output parameter gets assigned to the first return value, and so on.

If the function has multiple return values, the rules and restrictions are the same as
for declaration functions. For more information, see “Multiple Return Values” on page
3-24.

The definitions section can contain intermediate terms and if-elseif-else
statements. The same syntax rules as in the declaration section of a let statement
apply. For more information, see “Using Intermediate Terms in Equations” on page 2-
46.

The definitions section cannot contain expressions with dynamic semantics, such
as integ, time, der, edge, initialevent, or delay.

Packaging rules:

Simscape function files can reside directly on MATLAB path or in package directories.
For more information, see “Organizing Your Simscape Files” on page 4-30.

You can use source protection, as described in “Using Source Protection for Simscape
Files” on page 4-31.

Importing a package imports all the Simscape functions in this package. For more
information, see “Importing Domain and Component Classes” on page 2-143.

If a MATLAB function and a Simscape function have the same name, the MATLAB
function has higher precedence.

Simscape Functions

Using Simscape Functions

The purpose of Simscape functions is to reuse expressions in equations of multiple
components, as well as in member declarations of domain or component files.

For example, exponential diode equations often use an expression that is a modification of
exp (1), to provide protection for large magnitudes of i. For details, see Diode and NPN
Bipolar Transistor block reference pages. The “Simscape Functions” example shows how
you can write a Simscape function to reuse this expression, instead of repeating it in
every block:

function out = userFunction(x,y,z)
definitions
out = if x >y
(x-z)*exp(y);
elseif x < -z
(x+y)*exp(-z);
else
exp(x)
end
end
end

Then, the Diode block can call this function with y and z values of 80 and 79,
respectively:

equations
0 == SimscapeFunction.Use.Functions.userFunction(i,80,79);
end

and the NPN Bipolar Transistor block can call the same function with values of 40 and
39:

equations

0 == SimscapeFunction.Use.Functions.userFunction(i,40,39);
end

Recommended Ways of Code Reuse
Simscape language has a variety of tools that facilitate code reuse. Simscape functions

and declaration functions let you reuse expressions. Subclassing and composite
components let you reuse equations.

3-29

3 Advanced Techniques

To reuse expressions across multiple components:

Use Simscape functions to reuse expressions in equations and member declarations.

Use declaration functions in member declarations to reuse expressions that are out of
Simscape expression capability. For more information, see “Declaration Functions” on

page 3-23.
Functionality Authoring File extension |Usage Supports
Language Arguments with
Units
Simscape Simscape .SSC OT .SSCp Member declaration |Yes
function and equations
Declaration MATLAB .mor.p Member declaration |No
function only

To reuse equations across multiple components:

Use subclassing to model the "is-a" relationship between the base component and the
derived component. The equations in the base component are reused in the derived
component. For more information, see “Subclassing and Inheritance” on page 2-141.

Use composite components to model the "has-a" relationship between the container
component and the subcomponents. The equations in the member components are
reused in the composite component. For more information, see “About Composite

Components” on page 2-74.

See Also

function

Related Examples

“Simscape Functions”

More About

“Declaration Functions” on page 3-23

3-30

Simscape File Deployment

* “Generating Custom Blocks from Simscape Component Files” on page 4-2
* “Selecting Component File Directly from Block” on page 4-4

* “Deploy a Component File in Block Diagram” on page 4-6

+ “Switch Between Different Source Components” on page 4-11

* “Prototype a Component and Get Instant Feedback” on page 4-22
* “Building Custom Block Libraries” on page 4-30

* “When to Rebuild a Custom Library” on page 4-34

* “Customizing the Library Name and Appearance” on page 4-35

* “Create a Custom Block Library” on page 4-38

* “Customizing the Block Name and Appearance” on page 4-40

» “Customize Block Display” on page 4-52

* “Checking File and Model Dependencies” on page 4-54

* “Case Study — Basic Custom Block Library” on page 4-58

* “Case Study — Electrochemical Library” on page 4-65

4 Simscape File Deployment

Generating Custom Blocks from Simscape Component

Files

4-2

After you have created the textual component files, you need to convert them into
Simscape blocks to be able to use them in block diagrams. There are two mechanisms
that let you do this:

“Selecting Component File Directly from Block” on page 4-4 — Use the Simscape
Component block, which you can find in the Utilities library, and point it to a Simscape
component file. The block instantly acquires the properties based on the source
component file: name, description, parameters, variables, appropriate ports and the
custom icon image (if available). If you modify the underlying source file, the block
reflects these changes. If you point the block to a different component file, the block
properties change accordingly, to reflect the new source.

Use this method to quickly deploy a single component file, to try out different variants
of a component in your model, or to iterate on a component definition and get instant
feedback.

“Building Custom Block Libraries” on page 4-30 — Generate a custom block library

from a package of Simscape component files. The package hierarchy determines the
resulting library structure. You can customize the library name and appearance and
provide annotation.

Use this method to generate reusable custom block libraries.

See Also

Related Examples

“Deploy a Component File in Block Diagram” on page 4-6
“Switch Between Different Source Components” on page 4-11
“Prototype a Component and Get Instant Feedback” on page 4-22
“Create a Custom Block Library” on page 4-38

“Customize Block Display” on page 4-52

See Also

More About

. “Customizing the Block Name and Appearance” on page 4-40
. “Customizing the Library Name and Appearance” on page 4-35

4-3

4 Simscape File Deployment

Selecting Component File Directly from Block

4-4

In this section...

“Suggested Workflows” on page 4-4
“Component File Locations” on page 4-5

Suggested Workflows

The Simscape Component block lets you select a Simscape component file, and then
instantly acquires the properties based on that source component file: name, description,
parameters, variables, the block icon and appropriate ports. For more information on how
the component file elements translate into the properties of the block, see “Customizing
the Block Name and Appearance” on page 4-40.

Use the Simscape Component block to:

Quickly deploy a single Simscape component file as a block in your model, without the
extra steps of packaging the file and building a custom library. For example, you wrote
a component prototype yourself, got it from a colleague, or found it on MATLAB
Central. Save the file in your current working directory, or anywhere on the MATLAB
path, and use it as a source file for a Simscape Component block in your model. For
more information on valid locations of a source component file, see “Component File
Locations” on page 4-5. For an example of this workflow, see “Deploy a Component
File in Block Diagram” on page 4-6.

Try out different component implementations, to decide which implementation is most
appropriate for your model. You can also use this workflow to test the differences
between the old and new implementations of the same component. Instead of adding,
deleting, and reconnecting different blocks in your model, you can use a single
Simscape Component block and switch between the source component files. When you
point a Simscape Component block to a different component file, the block properties
change accordingly, to reflect the new source. For an example of this workflow, see
“Switch Between Different Source Components” on page 4-11.

Quickly try out different ideas for a physical component and get instant feedback on
the resulting block implementation. This workflow lets you interactively modify the
component source and immediately see the changes by refreshing the resulting block.
For an example of this workflow, see “Prototype a Component and Get Instant
Feedback” on page 4-22.

See Also

Component File Locations

When you deploy a component file by using the Simscape Component block, the
component file does not have to be in a package. However, the directory where the file
resides has to be on the MATLAB path. If the file resides in a package, then the package
parent directory must be on the MATLAB path.

If you browse to a component file that is not on the path, then, when you try to select it, a
File Not On Path dialog opens. Click Add to add the appropriate directory to the MATLAB
path.

The Add button is similar to the addpath command, that is, it adds the folder to the path
only for the duration of the current MATLAB session. If you do not save the path and then
open the model in a subsequent session, the Simscape Component block becomes
unresolved.

If the source component is located in the current working directory, then there is no
requirement for it to be on the path. However, if you later try to open the model from
another directory, the Simscape Component block also becomes unresolved.

It is good practice to keep the source component files that you want to reuse in a
directory included in your permanent search path. For more information, see “What Is the
MATLAB Search Path?” (MATLAB).

See Also

Related Examples

. “Deploy a Component File in Block Diagram” on page 4-6

. “Switch Between Different Source Components” on page 4-11

. “Prototype a Component and Get Instant Feedback” on page 4-22

More About

. “Customizing the Block Name and Appearance” on page 4-40

4 Simscape File Deployment

Deploy a Component File in Block Diagram

This example shows how you can quickly transform a Simscape component file into a
block in your model, without the extra steps of packaging the file and building a custom
library.

Suppose you have the following Simscape file, named my resistor, in your working
directory:

component my resistor

Linear Resistor

The voltage-current (V-I) relationship for a linear resistor is V=I*R,
where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the
+ and - signs respectively.

o o° o° o° o° o°

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
end
variables
i=4{0, 'A"}; % Current
v=4{0, 'V'},; % Voltage
end
parameters
R={1, 'Ohm' }; % Resistance
end
branches
i:p.i->n.i;
end
equations
assert (R>0)
V == p.v - Nn.v;
v == i*R;
end
end

Tip This component implements a linear resistor. It is described in more detail in “Model
Linear Resistor in Simscape Language” on page 1-3. You can copy the source from this
page and save it asmy resistor.ssc in your working directory.

To deploy this component as a block in your model:

4-6

Deploy a Component File in Block Diagram

Open or create a model.

Open the Simscape > Utilities library and add the Simscape Component block to your
model. At first, the block does not point to any component file. Therefore, it does not
have any ports, and the block icon states it is Unspecified.

B

EEC
Uns pecified

Double-click the block to open the source file selector dialog box.

o o

Block Parameters: Simscape Component @
Simscape Component

Select the Simscape component that this block will implement by
specifying the name below.

[0K H Cancel H Help I Apply

Click to open the browser. The browser opens in the current working directory
and lists only the files with the .ssc or .sscp extension. Select the

my resistor.ssc file and click Open. The name of the source file appears in the
text field of the source file selector dialog box, and the block name, description, and
the link to source code appear in the preview pane.

4 Simscape File Deployment

-

o

Block Parameters: Simscape Component @

Linear Resistor
The voltage-current (V-I) relationship for a linear resistor is V=I*R,
where R is the constant resistance in chms.

The positive and negative terminals of the resistor are denoted by
the + and - signs respectively.

Source code

my_resistor

OK][Cancel H Help][Apply]

Tip Instead of browsing, you can type my resistor directly into the text field. In
this case, however, the preview pane does not automatically get updated. If you want

to preview the block name, description, or source code, click .

5 Click Apply. The block icon and dialog box get updated, based on the selected source
component.

Sims cape

my_resistor
Sims cape
Component

4-8

Deploy a Component File in Block Diagram

Block Parameters: Simscape Component

Linear Resistor

[l

The voltage-current (V-I) relationship for a linear resistor is V=I"*R, where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the + and - signs respectively.

Source code

Choose source

Settings

Parameters | Wariables

Resistance: 1 Ohm -
OK H Cancel ” Help] Apply

Block Parameters: Simscape Component

Linear Resistor

The voltage-current (V-I) relationship for a linear resistor is V=I*R, where R is the constant resistance in ohms.

The positive and negative terminals of the resistor are denoted by the + and - signs respectively.

Source code

Settings

Parameters | Variables

=55

Choose source

m

Override Variable
] Current
[T Voltage

Beginning Value Unit

oK ” Cancel ” Help Apply

4-9

4 Simscape File Deployment

4-10

See Also

Related Examples

“Model Linear Resistor in Simscape Language” on page 1-3
“Customize Block Display” on page 4-52

“Switch Between Different Source Components” on page 4-11
“Prototype a Component and Get Instant Feedback” on page 4-22

More About

“Selecting Component File Directly from Block” on page 4-4
“Customizing the Block Name and Appearance” on page 4-40

Switch Between Different Source Components

Switch Between Different Source Components

This example shows how you can try out several variants of a component in your model by
pointing the Simscape Component block to different component files.

The component files used in this example are capacitor models with different levels of
fidelity, to allow exploration of the effect of losses and nonlinearity. The source files are
part of your product installation, located in the following package directory:

matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as returned by
entering

matlabroot

in the MATLAB Command Window. For more information about these capacitor models,
see “Case Study — Basic Custom Block Library” on page 4-58.

To test capacitor models of different fidelity:

1 To create a new model with optimal settings for physical modeling, in the MATLAB
Command Window, type:

ssc_new

2 Open the Simscape > Utilities library and add the Simscape Component block to your
model. At first, the block does not point to any component file, therefore it does not
have any ports and the block icon says Unspecified.

3 Double-click the block to open the source file selector dialog box.

4-11

4 Simscape File Deployment

o

Block Parameters: Simscape Component

Simscape Component

specifying the name below.

(=)

Select the Simscape component that this block will implement by

[QK] [Cancel

] [Help

4
Click and navigate to the directory containing the capacitor component files.

Source File @
P
ol | . « matlab » toolbox » physmoed » simscape » simscapedemos » +Capacitors » v|$7| Search +(PI
Organize = New folder =~ [IZ@I
. Simscape Doc Ce = Mame ‘ Date modified Type Size
. Doc examples sal X s . .
S X J SSCpIj 11/26/2015 3:02 AM File folder
| ocuments
AL || IdealCapacitor.ssc 9/25/2013 5:46 PM 55C File 1KE
= | ibrari || IdealUltraCapacitor.ssc 9/25/2013 5:46 PM SSC File 1KE
ibraries
maj . : || LossyUltraCapacitor.ssc 9/25/2013 5:46 PM SSC File 2KB
=| Documents
J‘. Music
&= Pictures 3
B Videos
1M Computer
&, 0sDisk (C) a8
File name: IdealCapacitor.ssc hd ’(”.ssc,*.ssr_p] VI
[Open] ’ Cancel]

4-12

5 Select the IdealCapacitor.ssc file and click Open. The name of the source file
appears in the text field of the source file selector dialog box, and the block name,
description, and the link to source code appear in the preview pane.

Switch Between Different Source Components

-

Block Parameters: Simscape Component @

Ideal Capacitor

Models an ideal (lossless) capacitor. The output current Iis related
to the input voltage V by I = C*dV/dt where C is the capacitance.

Source code

Capacitors.IdealCapacitor

OK][Cancel H Help][Apply]

Note Because the component file resides in a package, the file name in the selector
dialog box field is the full name, starting from the package root.

Click OK. The block icon gets updated, based on the selected source component.

-

Sims cape
Component

Note The +Capacitors package directory contains image files, with the names
corresponding to the Simscape component files, that define customized block icons.
Therefore, when you point the Simscape Component block to the
IdealCapacitor.ssc source file, it uses the IdealCapacitor. jpg in the same
directory as the block icon. For details, see “Customize the Block Icon” on page 4-
48.

Build the test model and connect the blocks as shown in the following diagram.

4-13

4 Simscape File Deployment

Step Switch
PE C]
o -
r‘ Scope
1,
G:) Current % Load
Source Simscape ' 0.1 Chm
0.03 A Component

fix) =0

A

8 Open the scope and simulate the model.

4-14

Switch Between Different Source Components

-

4| Scope E'@

File Tools View Simulation Help o

Q- @@k = Q- £ &-

Ready T=10.000

The Simscape Component block points to an ideal capacitor component. Simulation
results show that, when the switch is flipped at t=>5 seconds, the capacitor delivers
2.5 A to the load.

9 To switch to another capacitor model, open the Simscape Component block dialog
box and click Choose source.

4-15

4 Simscape File Deployment

Block Parameters: Simscape Component @

Ideal Capacitor

Models an ideal (lossless) capacitor. The output current I is related to the input voltage V' by I = C*dV/dt where C
is the capacitance.

Source code Choose source

Settings

Parameters | Variables

Capacitance: 1 F -
[oK H Cancel H Help] Apply

The source file selector dialog box opens, displaying the preview of the currently
selected component.

-

o

Block Parameters: Simscape Component @

Ideal Capacitor

Models an ideal (lossless) capacitor. The output current I is related
to the input voltage V by I = C*dv/dt where C is the capacitance.

Source code

Capacitors.IdealCapacitor

[QK][Cancel H Help] Apply

10
Click . The browser opens in the +Capacitors directory, because it contains the

currently selected component.

4-16

Switch Between Different Source Components

11 Select the IdealUltraCapacitor.ssc file and click Open. The name of the source
file appears in the text field of the source file selector dialog box, and the block name,
description, and the link to source code appear in the preview pane.

o

Spurce code

Ideal Ultracapacitor

Block Parameters: Simscape Component

Capacitors.IdealUltraCapacitor

(]

Models an ideal (lossless) ultracapacitor where the capacitance C
depends on the voltage V according to C = CO + V=dC/dV.

oK

][Cancel H

Help H Apply]

-

12 Click OK. The block icon in the model diagram updates to reflect the new source

component.

[

Step

Switch
PE

e C]

@

Current
@

Source
0.05 A

fix) =0

%

Simscape
Component

Load
0.1 Chm

WA

Scope

4-17

4 Simscape File Deployment

13 Rerun the simulation.

4| Scope =N B

File Tools View Simulation Help

@ - @@ Pk - a-E- £ &-

T=10.000

Ready

Simulation results show that, when the switch is flipped at t=5 seconds, the current
delivered to the load is less than 2.5 A.

14 To make the effect more pronounced, open the block dialog box and increase the
Rate of change of C with voltage V parameter value to 0.8 F/V.

4-18

Switch Between Different Source Components

Block Parameters: Simscape Component @
Ideal Ultracapacitor

Models an ideal (lossless) ultracapacitor where the capacitance C depends on the voltage V according to C = CO +
VEdC/dV.

Source code Choose source

Settings
Parameters | Wariables
Mominal capacitance CO at V=0: 1 F -
Elate of change of C with voltage 0.8 v -

[OK ” Cancel][Help] Apply

4-19

4 Simscape File Deployment

-

4| Scope

File Tools View Simulation Help

® b - aQ-E-| £ &H-

@-| @

Ready

4-20

See Also

Related Examples

“Deploy a Component File in Block Diagram” on page 4-6

See Also

. “Prototype a Component and Get Instant Feedback” on page 4-22

More About

. “Selecting Component File Directly from Block” on page 4-4
. “Customizing the Block Name and Appearance” on page 4-40

4-21

4 Simscape File Deployment

Prototype a Component and Get Instant Feedback

This example shows how you can interactively modify the component source and get
instant feedback on the resulting block implementation.

To have the block reflect the changes to the underlying source, right-click the block icon
and, from the context menu, select Simscape > Refresh source code. If you make a
mistake (for example, omit the end keyword) when editing the component source, then
when you refresh the block, the compiler issues a diagnostic error message, pointing to
the appropriate line in the code.

1 Open the Simscape > Foundation Library > Electrical > Electrical Elements >
Variable Resistor block dialog box and click the Source code link. The underlying
source code opens in the Editor window.

component variable resistor

Variable Resistor :1.5

Models a linear variable resistor. The relationship between voltage V
and current I is V=I*R where R is the numerical value presented at the
physical signal port R. The Minimum resistance parameter prevents
negative resistance values.

Connections + and - are conserving electrical ports corresponding to
the positive and negative terminals of the resistor respectively. The
current is positive if it flows from positive to negative, and the
voltage across the resistor is given by V(+)-V(-).

0 o° o 0° o° o o° o° o° o°

o°

Copyright 2005-2019 The MathWorks, Inc.

inputs
R={0.0, 'Ohm' }; % R:left
end
nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
end
parameters
Rmin = { 0, 'Ohm' }; % Minimum resistance R>=0
end
variables
i=4{0, 'A" }; % Current
v={0, 'V'} % Voltage
end
branches
i:p.i->n.i;
end

4-22

Prototype a Component and Get Instant Feedback

equations
assert (Rmin>=0)
V == p.v - Nn.v;
if R > Rmin
v == i*R;
else
v == i*Rmin;
end
end

end

Change the component name in the first line:

component my var_res

Save the source code as a file called my var res.ssc in your current working
directory.

To create a new model with optimal settings for physical modeling, in the MATLAB
Command Window, type:

SsSC_new

Open the Simscape > Utilities library and add the Simscape Component block to your
model. At first, the block does not point to any component file, therefore it does not
have any ports and the block icon says Unspecified.

B

EEC
Urs pecified

Double-click the block to open the source file selector dialog box. Type my var res
into the text field.

o "

Block Parameters: Simscape Component @

Variable Resistor with Energy Sensor

Source code

My_var_res

0K H Cancel H Help H Apply I

4-23

4 Simscape File Deployment

7 Click OK. The block icon gets updated, reflecting the selected source component. It
now has two conserving electrical ports, + and -, and a physical signal input port PS.

[primscape

Ty var res
Simscape
Component

8 Double-click the block to open its dialog box. At this point, it has the same block
name, description, parameters, and variables, as the Variable Resistor block in the

Foundation library.

Block Parameters: Simscape Component
Variable Resistor

Models a linear variable resistor. The relationship between voltage V and current Iis V=T*R where R is the
numerical value presented at the physical signal port R. The Minimum resistance parameter prevents negative

resistance values.

=55

Connections + and - are conserving electrical ports corresponding to the positive and negative terminals of the
resistor respectively. The current is positive if it flows from positive to negative, and the voltage across the

Choose source

resistor is given by V{+}-V(-).

Source code

Settings

Parameters | Variables

Minimum resistance R>=0: i Ohm -
0K ” Cancel][Help] Apply

4-24

9 Click the Source code link to start editing the source code. Change the block name

and description:

Prototype a Component and Get Instant Feedback

component my var_res
% Variable Resistor with Energy Sensor
% Variable linear resistor that outputs total electrical energy.

10 To have the block reflect the changes to the underlying source, right-click the block
icon and, from the context menu, select Simscape > Refresh source code. The
block dialog box updates accordingly.

Block Parameters: Simscape Component @
Variable Resistor with Energy Sensor

Variable linear resistor that outputs total electrical energy.
Settings

Parameters Variables

Minimum resistance R>=0:] Ohm -

[OK H Cancel H Help] Apply

11 Declare the output e and add the equation calculating total electrical energy. The
component source now looks like this:

component my var res
Variable Resistor with Energy Sensor
Variable linear resistor that outputs total electrical energy.

%
%

inputs
R={0.0, 'Ohm' }; % PS:left
end
outputs
e={06, 'J"}
end
nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right
end
parameters

4-25

4 Simscape File Deployment

Rmin = { 0,